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Abstract 

The increasing use of smartphones has led to a surge in crowdsourcing initiatives where 
citizens collect and upload information. As citizens are more familiar with using their 
smartphones in various daily life activities, it becomes easier to obtain their participation. 
Additionally, recent smartphones are equipped with a greater number of sensors, allowing 
for the collection of measurements that were impossible to obtain with older models. In this 
paper, we present a novel method for determining the geolocation of static events using 
citizen contributions. Our method aims to mitigate the errors associated with measured 
bearings by triangulating all available contributions. This triangulation results in an 
approximate region that either contains the target location or is very close to it. We tested 
our method in three experiments, each with a known target location, to assess its reliability. 
The results were promising, indicating that our approach is particularly useful in applications 
where high degrees of certainty are not required, such as forest fire ignitions. Combining this 
method with citizen contributions can provide valuable support to authorities, enabling them 
to act quickly and effectively in such emergency situations. 
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1. Introduction 

The use of smartphones by citizens has been massified in the last decades. As citizens are 
more familiar with using their smartphones in various daily life activities, it becomes easier to 
obtain their participation in crowdsourcing initiatives through mobile devices, particularly 
when the relevance of those activities for society is well perceived. Moreover, modern 
smartphones are nowadays equipped with a variety of sensors, particularly for positioning 
(e.g., Global Navigation Satellite System (GNSS) receivers) and orientation (e.g., digital 
compasses) allowing to collect data that otherwise would not be possible. However, the 
quality of positioning and orientation measurements is key for many applications. Although 
the accuracy and precision of these sensors have been increasing over time, there are several 
aspects affecting the quality of their measurements, such as signal blocking or reflections and 
the multipath effect (Hölzl et al., 2013; Hoseinitabatabaei et al., 2015; Zhang et al., 2018) for 
GNSS positioning, and calibration errors or the influence of magnetic fields for compass 
measurements (Odenwald, 2019), to name just a few. 

Most studies have been looking at GNSS-based positioning errors and less attention has been 
paid to compass-based orientation errors, which are key for applications requiring such 
measurements. They may suffer from external effects, such as magnetic fields in the 
surroundings (e.g., ferromagnetic materials like cars, power transmission lines, and other 
metallic objects) and sensor-related noise, mostly associated with the quality of the sensor 
and its location within the internal layout of the device. Consequently, different smartphone 
models from different manufacturers have diverse levels of quality (e.g., different levels of 
quality are applied to devices targeting different segments of buyers), all influencing the 
accuracy and precision of measurements differently. 

Experiments in the field of geology made by Odenwald (2019), comparing a smartphone and 
a tablet, showed consistent results regarding the first, with azimuth absolute errors around 2 
degrees, in contrast to the 20 degrees obtained with the latter. Novakova & Pavlis (2017) 
developed a case study to assess the precision of two mobile devices for the measurement of 
planar orientations. Using a smartphone and a tablet, they revealed that the quality of the 
measurements can be very different among different devices. While the smartphone showed 
stability and lower errors, the tablet revealed a very unstable quality. Their study suggests 
that the problems are mainly related to the hardware (i.e., the sensors themselves) and, 
worse than that, they may be unpredictable. Fonte et al. (2022) performed several 
experiments to understand the variability of the bearing in different locations with 5 different 
smartphone models from different manufacturers. The results showed a relatively small 
standard deviation, with 75% of the values below 1 degree, but a relatively high difference 
regarding the real bearing measure, in some cases surpassing 20 degrees. Moreover, errors 
might be systematic or drift through time (e.g., see (Novakova & Pavlis, 2017), (Whitmeyer et 
al., 2019)). 
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For applications requiring the contribution of multimedia data (e.g., photos, videos) taken 
from a distance, the impact of orientation errors can be very relevant given that they are a 
function of distance. The magnitude of the displacement error can be estimated using 
Equation 1, where 𝐿!  represents the displacement error, perpendicular to the line of sight, 
𝐷!the distance to the observed location, and 𝛿 the orientation error that can assume a right 
or left direction. For a better understanding of the impact of the distance over the error, 
Figure 1 provides a visual illustration and Table 1 shows some examples of the error for 
different distances. 

  (1) 

 

Figure 1 - Orientation inaccuracy 𝛿 and its potential impact 𝐿! on the event localization, depending on its distance 𝐷! from 
the observation site (adapted from (Fonte, Patriarca, et al., 2022)) 

Table 1 - Displacement error 𝐿! (meters) as a function of the distance 𝐷! between the source location and the target location, 
and the orientation error (𝛿). 

Orientation error (𝜹) 
(degrees) 

Distance 𝑫𝒊(meters) 
500 1000 5000 

1 17 35 175 
2 35 70 349 
5 87 174 872 

10 174 347 1736 
20 342 684 3420 

Given the impact of orientation errors described above, it is of utmost relevance to 
developing methods that help mitigate the effect of those errors, especially in cases where 
accuracy is key. Previous studies have looked at this particular issue. Hoseinitabatabaei et al. 
(2015) proposed a system that uses internal mobile sensors (i.e., accelerometer, magnetic 
field, among others) to automatically detect and estimate the facing direction of users while 
they are walking. Their approach works in two phases: (i) first the position of the mobile 
phone is estimated and, (ii) accordingly, the best algorithm to estimate the direction, from a 
list of sorted direction algorithms for each position, is used. Kunze et al. (2009) presented a 
method to estimate the orientation of mobile devices while they were carried out in their 
user’s pockets. 

This work proposes an approach to identify the probable geolocation of observed events by 
combining contributions from multiple volunteers located around a target event. The 
approach enables: (i) the estimation of errors associated with measured orientations, and (ii) 
the use of these errors to estimate target regions with several degrees of confidence that are 
likely to include the observed event. One potentially relevant use case is the detection of 
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forest fire ignitions. The results show that, even though it was not possible to eliminate the 
effects of the observed errors, the regions obtained for likely geolocation of the observed 
events enable the identification of the target's geolocation with several degrees of 
confidence.  

The results demonstrate that, while it wasn't possible to eliminate the effects of observed 
errors, the identified regions either include the observed event or are very close to it. 

The remainder of this paper is organized as follows. Section 2 describes the methodology 
proposed in this study along with partial results of one experiment to facilitate the 
understanding; section 3 presents and discusses the results of three experiments (including 
the one used to provide partial results during the methodology description); section 4 
concludes the paper and draws potential directions to follow in future work. 

2. Methodology 

This section outlines the methodology proposed in this study, which, to the best of our 
knowledge, has not been tried before. In an ideal scenario, determining the location of a 
target event (e.g., the event location) from a source location (e.g., the user's location) requires 
knowledge of the source location coordinates, the direction to the target, and the distance to 
it. These measures can be taken with the help of a mobile device. However, mobile devices 
cannot directly measure the distance to a target, and human estimations are often inaccurate. 
As a result, to rely only on measurements captured by mobile devices, it is necessary to 
develop strategies that enable the geolocation of the observed event and that enhance 
accuracy and reduce uncertainty. 

The methodology proposed in this paper is divided into two parts. The first part focuses on 
estimating the orientation errors, processing the uncertainty, and combining the different 
contributions. In this part, we employed a combination of techniques to estimate the 
orientation errors and process the uncertainty in the data. We then used a triangulation 
approach to combine the different contributions and generate an initial region/ set of regions. 
The second part of the methodology is designed to refine these resulting regions. To do this, 
we collected measurement data following the first part of this methodology and applied the 
convex hull concept. We employed an iterative process to adjust the resulting region. 

To collect the aforementioned measurements, we used a developed mobile application that 
collects the user's geolocation obtained via the GNSS receiver, the magnetic bearing pointing 
towards the target location and the magnetic bearing towards the user's own shadow, which 
is used to estimate the orientation error. We selected point of interest that was visible from 
almost anywhere around the city of Coimbra, namely the main tower at the University of 
Coimbra, as the target location. To simulate people using the mobile app to report an event 
occurring at this target location, we collected data from various source locations in the field. 
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2.1. Base geolocation approach 

Our methodology triangulates the orientation measurements (i.e., the bearings) from 
multiple users to estimate the location of static events. The intersection of the bearings gives 
us an approximation of the area where the event is taking place. This approach requires a 
minimum of two contributions. If more contributions are available, they are all used to 
minimize the uncertainty of the location which results in a more accurate location estimate. 
Figure 2 illustrates this approach using the contributions of four users, where 𝐵!(𝑖 = 1,4) 
represents the magnetic bearings measured by mobile devices. These bearings are measured 
clockwise and vary between 0° and 360°. The resulting geometry shows the most probable 
location of the event.  

 
Figure 2 - Event geolocation principle with the contributions of 4 volunteers (adapted from (Fonte, Jesus, et al., 2022)) 

However, these measurements are often subject to errors. When orientation errors are 
relatively large, the intersection of lines of sight results in locations far from the true 
geolocation of the event. To produce an accurate final solution, it's essential to measure and 
account for such errors. 

2.2. Estimating the orientation errors 

To minimize the effects of errors in bearing measurements, we propose using the bearing 
measured towards the shadow of the volunteer. The azimuth of the shadow can be computed 
from the known azimuth of the sun using the solar position algorithm (Reda & Andreas, 2008), 
which takes into account the geographic coordinates of the volunteer and the date and time 
of the measurement. This orientation can then be converted into a magnetic bearing 
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considering the magnetic declination, which is computed by magnetic observatories. By 
comparing the computed magnetic bearing with the one measured by the volunteer’s 
smartphone, we can calculate the observation error and use it to correct the bearing 
measured towards the target location (i.e., the event), hopefully obtaining a more accurate 
estimate of the true bearing.  

Considering that 𝐴𝑍"#$ is the azimuth of the sun, 𝛿	the magnetic declination computed by 
official magnetic observatories1 and regularly updated, 𝐵%& the measured magnetic bearing 
of the shadow, and 𝐵%_() the measured magnetic bearing towards the target location. 
Equations (3), (4) and (5) enable the computation of, respectively: the real magnetic bearing 
of the shadow (𝐵*&), the magnetic bearing error (𝜀), and the corrected magnetic bearing 
towards the target location (𝐵+_()) 

 𝐵*& = 𝐴𝑍"#$ ± 𝛿 ± 180𝑑𝑒𝑔, (3) 

 𝜀 = 𝐵*& − 𝐵%&, (4) 

 𝐵+_() = 𝐵%_() + 𝜀. (5) 

This procedure is illustrated in Figure 3. 

 
1 https://intermagnet.github.io/ 
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Figure 3 - Relation between the measured and real bearings (adapted from (Fonte, Jesus, et al., 2022)) 

Fig 4 shows the bearings initially measured towards the target location (left) and their 
corrected version using the error calculated towards their shadow (right). 

 

Figure 4 - Initially measured bearings (left) and their corrected version (right) 
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2.3. Processing the orientation uncertainty 

The description of the method provided until now enables the estimation of the orientation 
error associated with the bearing’s measurement. However, as many factors may affect the 
accuracy of the measured magnetic bearing, which may even change during the time spent 
to complete a contribution, we added additional conditions to filter and process these data 
to compute the estimated geolocation of the target location. As in some cases the error in 
the measured and computed magnetic bearing towards the shadow may be very large, we 
consider errors larger than 20 degrees to be too significant, and they may indicate that the 
measurement has been affected by some unknown factors (e.g. magnetic fields in the vicinity 
or lack of calibration of the compass). Therefore, such errors are considered outliers and the 
observations are removed from the data processing. 

To account for the inherent uncertainty in bearing measurements, we developed a fuzzy 
approach to capture the variability related to the likelihood of the target location. Rather than 
representing the bearing towards the target location as a line, we define a funnel-shaped 
region with its apex at the observer's location and the opening angle equal to the previously 
calculated error, 𝜀. The bisector of the funnel is the corrected bearing towards the target 
location, which is obtained by adding the estimated error  to the measured bearing. Even 
though this approach accommodates the inherent variability and lack of systematic nature in 
the errors associated with bearing measurements, tests showed that in most cases it 
corresponds to a better estimate of the orientation towards the target location than the 
original measurement, but exceptions may still occur. 

The uncertainty inside each funnel-shaped region is expressed with a fuzzy trapezoid centred 
at the corrected bearings towards the target location, 𝐵+_(). Figure 4 shows a section of the 
funnel region perpendicular to the line corresponding to the corrected bearing. The core of 
the fuzzy function (degree of membership equal to 1) has an amplitude of 𝜀, and is centred 
on the 𝐵+_().  with a width of ±𝜀 29  for both sides. The support of the fuzzy set has an 
amplitude of 𝜀 for both sides of 𝐵+_() (a total of 2𝜀), with the degree of membership following 
a linear interpolation between 1 and 0 (see Figure 4). 
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Figure 5 - Trapezoidal fuzzy intervals perpendicular to the bearing to the target location, expressing the orientation 
uncertainty (extracted from (Fonte, Jesus, et al., 2022)) 

In practical terms, the funnel is calculated using the raster format and considering the degree 
of membership assigned to each pixel. 

2.4. Integrating contributions 

To determine the geolocation of the observed event using the fuzzy sets associated with each 
contribution, we summed up the raster layers of each contribution, resulting in a final raster 
layer. The pixel values in this layer ranged from zero (if none of the pixels from the different 
funnels had a value greater than zero) to the total number of contributions (if all the pixels 
from the different funnels had a value of one). We can represent the resulting area using 
different threshold values. For example, we can have a more restricted area using only the 
maximum value of the raster, which represents 100%, or a broader area using a lower 
percentage value. 

In some cases, the magnitude of the bearing error for certain contributions may be very low 
(e.g., less than 1 degree). While this might initially seem positive, it could result in a funnel 
that is more like a line of sight and would not take full advantage of the fuzzy approach 
described in the previous section. Additionally, since the orientation error is random in 
nature, these cases could have a negative impact on the integration result of the different 
contributions. To address this issue, we tested various minimum values for the amplitude of 
the funnel, ranging from 1 degree to 5 degrees for each side. 

Figure 5 shows the integration of 26 contributions towards a target location with varying 
minimum magnitude values for the funnels. The different shades of red represent different 
threshold levels (above 0.5 in this case), whereas the darker shades indicate a higher level of 
belonging to the target location. While lower values of magnitude may provide more accurate 
results, the figure shows that increasing the minimum magnitude value leads to a more 
homogenous area at the expense of a slight increase in uncertainty. Based on these findings, 
we decided to use a minimum magnitude value of 5 degrees for all our experiments. 
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Figure 6 - Integration of x contributions towards a target event (represented as a yellow star). The funnel magnitudes used 
are, from left to right, 1, 3, and 5 degrees. 

2.5. Refining the resulting region(s) 

At this point we have a resulting region characterized by a big search space, as we can observe 
in Figure 5. In this last part of the methodology, we propose an approach to reduce the search 
space based on the Convex Hull geometry. A Convex Hull is a geometric shape formed by 
connecting the outermost points of a scatter plot, resulting in a convex polygon that tightly 
encloses the original data points (De Berg et al., 2008). To perform this calculation, the raster 
resulting from the integration of several contributions was converted to vector format, 
resulting in a polygon for each region with pixel values within the predefined threshold classes 
above 0.5, defined by the following intervals: ]0.7, 0.8], ]0.8, 0.9], and ]0.9, 1.0]). 

Starting with the polygons that represent the highest threshold class (i.e., ]0.9, 1.0]), we 
calculate the Convex Hull geometry that encloses them. Then, we move to the next threshold 
class in descending order (i.e., ]0.8, 0.9]), and identify the polygons that are within a 500-
meter distance from those in the highest threshold class. We then calculate the Convex Hull 
geometry of the previous Convex Hull with these identified polygons. We repeat this process 
for the additional threshold classes above 0.5 (i.e., ]0.7, 0.8], ]0.6, 0.7], and ]0.5, 0.6]), thus 
covering areas with pixel values above 50% of belonging. It should be noted that the 500-
meter distance used to identify new polygons is always measured from the highest threshold 
class (i.e., from the class ]0.9, 1.0]. 

2.6. Reliability assessment 

To assess the reliability of the resulting region, we propose three metrics. First, the area of 
the largest region, represented by the final Convex Hull geometry obtained after the iteration 
process, provides an indication of the degree of uncertainty, with larger areas indicating 
higher uncertainty. Second, the variability of the area among the different levels of belonging 
(i.e., the different Convex Hull geometries) provides insights into the rate of areal change. 
Third, we can use the compactness of the geometry's shape, calculated by dividing its area by 
its perimeter, to understand its complexity. This metric helps us determine whether the shape 
is more concentrated or elongated. The combination of area and compactness metrics 
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provides a better understanding of the shape and size of the region, allowing us to assess the 
degree of uncertainty associated with it. 

3. Results and discussion 

In this section, we present the results of the experiment described in the Methodology 
section, where a fictional event was occurring at the main tower of the University of Coimbra. 
We also include the results of two additional experiments conducted at different target 
locations, specifically the bridge “Rainha Santa Isabel” and the shopping mall “Fórum 
Coimbra”, both near Coimbra, for convenience. For each of the three experiments, we show 
the final Convex Hull geometries for each threshold class above 0.5 (Section 2.5) and their 
respective metrics as defined in Section 2.6, specifically the area, perimeter, and shape 
compactness. In these three experiments, the target location is known, and we also provide 
the shortest distance from each of them to each of the Convex Hull boundaries to help the 
discussion. We also show the evolution of these metrics throughout the different threshold 
classes using a set of plots to facilitate the analysis. It is worth noting that the data was 
collected from several mobile devices of different brands and models to diversify the 
simulated contributions and approximate them to a real-case experiment. 

3.1. Experiment A - University of Coimbra main tower 

In this experiment, we collected 31 contributions, but 5 of them had an error higher than 20 
degrees and were rejected. Therefore, we used a total of 26 contributions to apply the 
methodology. Figure 7 displays the Convex Hull geometries obtained from the analysis of the 
University of Coimbra target location. As we move to lower threshold classes, both the area 
and perimeter increase and the geometries become more elongated. This trend is reflected 
in the metric values presented in Table 2. Additionally, the compactness of the geometries 
decreases, indicating a higher degree of complexity. 
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Figure 7 - Convex Hull geometries resulting from the analysis of the University of Coimbra main tower 

Naturally, the shortest distance from the target location to the Convex Hull geometries 
decreases as the area increase, reaching zero when the target location falls inside the 
respective geometry. In this case, the target location is already contained within the ]0.7, 0.8] 
threshold class. 

Table 2 - Metrics resulting from the analysis of the University of Coimbra main tower 

Threshold class Area (ha) 
Perimeter 
(meters) 

Shape 
compactness 

Distance from the target location to the convex 
hull geometry (meters) 

]0.9, 1.0] 17 20 0,74 214 
]0.8, 0.9] 85 45 0,73 116 
]0.7, 0.8] 160 58 0,77 0 
]0.6, 0.7] 1970 311 0,51 0 
]0.5, 0.6] 3305 352 0,58 0 

The main feature that stands out in Figure 8 is the inflection point at the threshold class ]0.7, 
0.8]. Considering the distance between the target location and the Convex Hull geometries, 
we can see that the target location falls within this class. 
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Figure 8 – Plots showing the variation of metrics for the University of Coimbra main tower 

 

3.2. Experiment B - Bridge Rainha Santa Isabel 

In this experiment, we collected 19 contributions, but 4 of them had an error higher than 20 
degrees and were rejected. Therefore, we used a total of 15 contributions to apply the 
methodology. Figure 8 shows the Convex Hull geometries obtained from the analysis of the 
bridge Rainha Santa Isabel target location. Once again, the area and perimeter of the 
geometries increase and become more elongated as we move to lower threshold classes, 
which is also reflected in the metric values presented in Table 3. Additionally, the 
compactness of the geometries mainly decreases, indicating a higher degree of complexity. 

 

Figure 9 - Convex Hull geometries resulting from the analysis of the bridge “Rainha Santa Isabel”. 

Likewise, the shortest distance from the target location to the Convex Hull geometries 
decreases as the area increases, reaching zero when the target location falls inside the 
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respective geometry. In this case, the target location is contained within the lowest threshold 
class at ]0.5, 0.6]. 

Table 3 - Metrics resulting from the analysis of the bridge “Rainha Santa Isabel”. 

Threshold class Area (ha) 
Perimeter 
(meters) 

Shape 
compactness 

Distance from the target location to the convex 
hull geometry (meters) 

]0.9, 1.0] 50 28 0,9 536 
]0.8, 0.9] 112 41 0,93 327 
]0.7, 0.8] 156 48 0,92 253 
]0.6, 0.7] 274 69 0,85 87 
]0.5, 0.6] 4093 327 0,69 0 

Figure 10 also shows an inflection point at the threshold class ]0.6, 0.7] but only for the 
perimeter and area. The shape compactness decreases smoothly with no inflexion point 
standing out. Considering the distance between the target location and the Convex Hull 
geometries, we can see that the target location falls within that class. 

   

Figure 10 – Plots showing the variation of metrics for the bridge “Rainha Santa Isabel”. 

 

3.3. Experiment C - Shopping mall Fórum Coimbra 

In this experiment, we collected 26 contributions, but 2 of them had an error higher than 20 
degrees and were rejected. Therefore, we used a total of 24 contributions to apply the 
methodology. Figure 11 shows the Convex Hull geometries obtained from the analysis of the 
shopping mall Fórum Coimbra target location. Once again, the area and perimeter of the 
geometries increase and become more elongated as we move to lower threshold classes, 
which is also reflected in the metric values presented in Table 4. In this case, the compactness 
of the geometries shows a slight increase, indicating a diminishing degree of complexity. 
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Figure 11 - Convex Hull geometries resulting from the analysis of the shopping mall “Fórum Coimbra”. 

Besides, the shortest distance from the target location to the Convex Hull geometries 
decreases as the area increases, reaching zero when the target location falls inside the 
respective geometry. In this case, the target location is contained within the lowest threshold 
class at ]0.5, 0.6], but the distance to the next class, i.e., ]0.6, 0.7] is very close to zero. 

Table 4 - Metrics resulting from the analysis of the shopping mall “Fórum Coimbra”. 

Threshold class Area (ha) 
Perimeter 
(meters) 

Shape 
compactness 

Distance from the target location to the convex 
hull geometry (meters) 

]0.9, 1.0] 153 73 0,6 786 
]0.8, 0.9] 351 101 0,66 632 
]0.7, 0.8] 646 133 0,68 110 
]0.6, 0.7] 1003 155 0,72 6 
]0.5, 0.6] 5783 379 0,71 0 

In this experiment, we can also see an inflexion point at the threshold class ]0.6, 0.7] only for 
the perimeter and area, as depicted in Figure 12. The shape compactness increases smoothly 
with no inflexion point emerging. Considering the distance between the target location and 
the Convex Hull geometries, we can see that the target location falls within that class. 
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Figure 12 – Plots showing the variation of metrics for the shopping mall “Fórum Coimbra”. 

3.4. Discussion 

In a real-world scenario, the geolocation of the target is usually unknown. However, to 
evaluate the effectiveness of this methodology, we conducted the three experiments 
described in this section, with known target locations. This allowed us to compare the results 
with the actual geolocation of the targets. Based on the analysis of these experiments, it 
appears that the inflexion point can be a useful indicator for selecting the smallest geometry 
that can include the potential target location or have it at a negligible distance (depending on 
the application). In experiment A, the inflexion point occurs at the threshold ]0.7, 0.8] and the 
target location is included in that geometry. In experiment B, the inflexion point appears at 
the threshold ]0.6, 0.7] and the target location is included in the geometry of the lower class, 
i.e., ]0.5, 0.6]. If we consider the inflexion class, the shortest distance between the target 
location and the geometry boundary is 87 meters. In experiment C, the scenario is similar to 
experiment B, except that the shortest distance between the target location and the 
geometry boundary of the inflexion class decreases to a negligible value of 6 meters. 

4. Conclusion 

This paper proposes an innovative method to calculate the approximate geolocation of static 
events using volunteer contributions taken from a distance using smartphones. The approach 
helps minimize orientation errors usually associated with the measurement of bearings which 
is one of the most difficult error types to tackle given its random nature. We performed three 
experiments targeting three different but known locations and compared them with the 
resulting areas. The results demonstrated that our method is able to determine regions 
containing the target location with different degrees of belonging, or with a negligible 
distance to it from their boundaries. Plotting the different reliance metrics throughout the 
threshold classes showed inflexion points that were good indicators to select the best Convex 
Hull geometry. In one experiment the target location was contained by that geometry 
whereas in the other experiments, the target location was at a small distance. 

Such a method can be beneficial in various applications which do not require a high degree of 
certainty, such as forest fire detection. In this case, citizens can use their smartphones to 
collect and submit the required measurements, helping authorities act quickly. 
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In reality, forest fires are not static events. This approach can be further extended to support 
events that move over time. This is an interesting idea for a future research avenue. Although 
one may think to replicate the approach proposed here at various  times, the problem is 
much more complex than that. At different time steps, each contribution should have an 
associated weight that decreases over time. In this way, we expect this method to geolocate 
the event's beginning and monitor its progression over time and space.  
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