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Abstract

The minmax regret robust shortest path problem aims at finding a path that minimizes the
maximum deviation from the shortest paths over all scenarios. It is assumed that different arc
costs are associated with different arc scenarios. This paper introduces techniques to reduce the
network, before a minmax regret robust shortest path algorithm is applied. The preprocessing
methods enhance others explored in previous research. The introduced methods act dynamically
and allow to update the conditions to be checked as new network arcs or network nodes that
can be discarded are identified. Computational results on random networks are reported, which
compare the dynamic preprocessing algorithms and their former static versions. Two robust
shortest path algorithms are tested with and without these preprocessing rules.

Keywords: Robust shortest path, Discrete scenarios, Dynamic preprocessing.

1 Introduction

One approach for dealing with costs uncertainty is to consider several possible scenarios. In the
case of the shortest path problem this is done either by associating a discrete set of costs with
each arc, or by assuming each arc cost varies within an interval. In this paper, the former case is
considered for the minimax regret robust shortest path problem, here simply called robust shortest

path problem. This problem consists of finding a path between two nodes of a network, which

minimizes the maximum regret cost of each path towards the shortest path, for all scenarios.

Yu and Yang [7] and, more recently, Pascoal and Resende [5|, developed algorithms for the

robust shortest path problem. Later, inspired by the works of Karasan, Pinar and Yaman [4] and

then Catanzaro, Labbé and Salazar-Neumann [3], for the interval data case, Pascoal and Resende |[6]
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presented theoretical results and algorithms that allow to reduce the network before a robust shortest
path algorithm is applied. These preprocessing techniques can identify arcs that are certainly part
of an optimal solution, as well as identify a priori, and later delete, nodes that do not belong to any
optimal solution.

The goal of this work is to enhance the preprocessing strategies developed in [6]. The improve-
ments are a consequence of three aspects: a new result that combines two propositions presented
in [6]; the development of dynamic preprocessing rules, in the sense that they are updated as the
preprocessing algorithms run and paths are computed. The idea behind these improvements is to
further reduce the network before a robust shortest path algorithm is applied, that is, to increase
the number of detected arcs that belong, or the nodes that do not belong, to the optimal solutions.
The last aspect concerns limiting the number of scenarios to consider in the tests, and thus to save
computational time. Empirical experiments compare the new rules with the former.

The remainder of the paper contains five other sections. Notation and concepts related with
the robust shortest path problem are introduced in the next one. Section 3 is dedicated to the
development of the new preprocessing rules and of the algorithms to implement them. An example is
provided in Section 4. Results of computational tests on random instances, comparing the new rules
and their original static versions, when used together with the labeling and the hybrid approaches

presented in [5], are reported and discussed in Section 5. Conclusions are drawn in Section 6.

2 Preliminary concepts

A finite multi-scenario model is represented as G(V, A, Si), where G is a directed graph with a set
of nodes V.={1,...,n}, aset of marcs A C {(i,7) : 4,5 € V and i # j} and a finite set of scenarios
Sk :={1,...,k}, k > 1. For each arc (i,j) € A, ci; represents its cost in scenario s, s € Sg. It is
assumed that the graph contains no parallel arcs. Let A’ be a nonempty subset of A. Then, G — A’
denotes the subgraph of G with set of nodes V' and set of arcs A\A’. In particular, G — {(4,7)} is
represented by G7;.

The set of arcs (nodes) in a path p is denoted by A(p) (V(p)). Given two paths p, g, such that
the destination node of p is also the initial node of ¢, the concatenation of p and ¢ is the path
formed by p followed by ¢, and is denoted by p ¢ g. The cost of a path p in scenario s, s € Sy, is
defined by

co= Y 1)
(1,1)EA(p)
With no loss of generality, 1 and n denote the origin and the destination nodes of the graph G,
respectively. The set of all (1, n)-paths in G is represented by P(G).

Let pli’js represent the [-th shortest (i, j)-path in G, i,j € V, for a given scenario s € Sk. In order
to simplify the notation, p"* is used to denote the (1,7n)-path, pll’:';, and LB} is used to denote the
cost of the shortest (i,n)-path in scenario s, ¢* (pil;f).

The minmax regret robust shortest path problem aims at finding a path in P(G) with the least
maximum robust deviation, i.e., satisfying

in RC 2
arg pénPl(%) (p), (2)



where RC(p) is the robustness cost of p, defined by

RC(p) := max RD*(p), (3)

and RD*(p) represents the robust deviation of path p in scenario s, s € Sk, defined by
RD*(p) := ¢*(p) — LBj. (4)

An optimal solution of (2) is called a robust shortest path.
A node, or an arc, is called robust 1-persistent if it belongs to some robust shortest path.
Otherwise, the node, or arc, is denominated robust O-persistent. The origin and the destination

nodes of the network are trivially robust 1-persistent nodes.

3 Preprocessing techniques

In [6], two sufficient conditions were established to identify robust 1l-persistent arcs and robust
O-persistent nodes. The first condition restricts the arcs candidate to robust 1-persistent to those
included in the shortest (1, n)-paths. The second condition is more global, as it allows to test all the
nodes that do not belong to a given path in the network. These facts make the method based on
the second condition more effective than the first for preprocessing the network. The computational
experiments reported in [6] showed that the tests established for detecting robust 1-persistent arcs
were effective very few times, even in networks with small density.

In this section new rules are developed to improve the previous preprocessing methods. One of
them results from the combination of two rules introduced in [6], for detecting robust 1-persistent
arcs and robust O-persistent nodes. Another one consists of restricting the number of tested scenar-
ios, whereas the remaining rules are dynamic approaches, in the sense that the tests are updated as
new solutions are computed. These new rules allow to find a bigger number of robust 1-persistent
arcs, and of robust O-persistent nodes, than the previous.

For the sake of completeness, first, two results introduced in [6] are recalled to be used later.
Proposition 1 concerns the identification of robust 1-persistent arcs, whereas Proposition 2 concerns
the identification of robust O-persistent nodes.

Proposition 1 ([6]). Let ¢ € P(G) be a path such that A(q) N {A(p'*) : s € Sk} # 0, and
(i,5) € A(q) N {A(p™*) : s € Sk} be an arc such that node n is reachable from node 1 in GY;. Let
S(i,j) = {s € Sk : (i,7) € p'*} be the set of scenarios for which the shortest (1,n)-paths contain
arc (i,7) and pi;j. denote the shortest (1,n)-path in P(G};) in scenario s, s € Sg. If

35 € 8(i,4) : RD*(p,5) > RC(q), (5)
then arc (i,j) is robust 1-persistent.
Proposition 2 (|6]). Consider a path ¢ € P(G), and a node i ¢ V(q). If

35 € Sp: RD(phf opl®) > RC(q), (6)

then node i is robust 0-persistent.



The combination of Propositions 1 and 2 can further enhance the former preprocessing rules.
Even though the search for robust 1-persistent arcs is confined to the set of arcs of the shortest
(1,n)-paths of the network, identifying one of them makes easier the detection of robust O-persistent
nodes. In fact, under such circumstances, the robust deviations calculation can be avoided. This

result is stated in the following.

Corollary 1. Let arc (i,j) be a robust I-persistent, and let ¢ € P(G) be a path, with (i,7) €
A(q) N {A(p™*) : s € Si}. Then, any node j' ¢ V(q) such that (i,j) ¢ p}f/ and (i,7) ¢ p;}i, for

some § € S(i,7), is robust O-persistent.
Proof. If arc (i, j) is robust 1-persistent and (4,7) € A(q) N {A(p"*) : s € S}.} for some q € P(G),
then, according to Proposition 1, (5) is satisfied for some § € S(i,7). Since pi;j. represents the

shortest (1,n)-path for scenario § in G that does not contain arc (4,j), then, any other path
q' € P(G), such that (i,5) ¢ A(¢'), satisfies ¢*(¢') > cé(pigj-), and, from (5),

RD*(¢') > RD*(p.;}) > RC(g). (7)

s

Hence, any node j' ¢ V(q) such that (i,j) ¢ pL, and (i,7) ¢ pjl.}i makes that p}j‘f op}}i does not
contain arc (,7), and, therefore, ¢’ can be set to that (1,n)-path. Thus, (6) follows from (7), and

according to Proposition 2 this means that j’ is a robust 0-persistent node. U

Some results are now presented to support an algorithm for identifying robust 1-persistent
arcs and another one for identifying robust O-persistent nodes. As mentioned earlier, the idea
behind these versions is to make the search dynamic and detect robust 1-persistent arcs and robust
O-persistent nodes, according to the least robustness cost of the (1,n)-paths obtained along the
process.

Let RC'min be a variable which stores the least robustness cost of a computed (1,n)-path at

any iteration of the algorithms. That variable is initialized with
RCmin = min{RC(p"*); s € Sy},

for detecting robust 1-persistent arcs, and, considering only the shortest (1,n)-path in scenario 1,
pbl, with
RCmin = RC(p"1),

for identifying robust O-persistent nodes. Let Arc and Nod denote the sets of arcs and of nodes to
be scanned, respectively. The conditions provided by Propositions 1 and 2 can be rewritten, using

variable RC'min. For any arc (i,j) € Arc, if node n is reachable from node 1 in G;; and
35 € 8(i,§) + RD¥(py}) > RCmin, (8)
holds, then the arc (i, j) is robust 1-persistent. Similarly, for any node i € Nod, if

35 € S, : RD(plf o ph®) > RCmin, (9)

m

is satisfied, then the node i is robust 0-persistent. These conditions demand the tree of the shortest
(j,m)-paths for each scenario s, denoted by 7%, j € V, s € Sk, and their costs LB;, to be known.
Any shortest path tree algorithm can be used with such purpose [1].



Let A; (V) be used to collect the robust 1-persistent arcs (0-persistent nodes). Let also @ be

the set of the shortest (1,n)-paths with the minimum robustness cost, i.e.
Q = {p"* : s € Sy and RC(p"*) = RCmin}.

According to Propositions 1 and 2, and to the initialization of RCmin, Arc and Nod are initialized
by
Are={(i.j) € A@) : 0 € Q},

and
Nod = V\V (p"h).

The value of variable RC'min may change along the algorithms. The (1,n)-paths computed by
the algorithms are stored in a list Xp, without repetitions. The set of arcs/nodes to scan may also
change, every time a new (1,n)-path ¢ such that ¢ ¢ Xp has a robustness cost not greater than
RCmin. If RC(q) < RCmin, RCmin is updated with RC(q). In what follows, it is shown how to
update Arc and Nod, depending on the obtained path ¢ satisfying RC'(q) < RCmin.

When identifying robust 1-persistent arcs, Proposition 1 allows to establish that if RC(q) =
RCmin, the arcs of {A(q) N (p'¥) : s € Sk} that were not identified as robust 1-persistent, i.e.,
those in {A(q) N A(p"®) : s € Sg}\ A1, should be analyzed. In case RC(q) < RCmin, the search
focuses only on the previous set, since path ¢ is a new candidate for the optimal solution. For
a selected (i,7) € Arc, path ¢ takes the particular form Pi;j-, for some s € S(i,7). Under these

conditions, one can write

1,s 1,8" . . 1,5\ .
Are — { ArcU ({A(p*l-j) NApP-Y) s € SpP\Ar) if RC(p,;;) = RCmin (10)

{A(p5) N A@PY) : s € Sh\As if RC(p,;) < RCmin

When searching for robust 0-persistent nodes, Proposition 2 establishes that the analysis of the
nodes of path ¢, V(q), can be skipped. Thus, if RC(¢) = RC'min, the nodes of V (q) can be removed
from Nod, and, if RC(q) < RCmin, the search focuses all the nodes outside V' (¢) that were not
already identified as robust O-persistent. For a selected node i € Nod, path ¢ has the particular

1 1 .
form py;° o p;7°, s € Sg. Then, one can write

1,s 1,s . 1,s 1,sy .
Nod — { Nod\V (p;;” op;)) if RC(py] op;) = RCmin (11)

VAV (py opy) UTD) if RC(py)” o p;y) < RCmin

Arcs/nodes may be scanned more than once, because the analyzed (1,n)-paths may have
arcs/nodes in common. This makes that some tests may be repeated after RC'min is updated.
Besides, in order to avoid repeating the path robust deviations, it is useful to store them, as

RD3;; = RDs(pi;j»), s € Sk, (i,7) € A, such that pi;j exists in G, (12)

and
RD; = RD*(py ;) s € Sk, i € V\{1,n}. (13)

A list X4 /Xy is used to store the arcs/nodes that have already been analyzed along the process.

The dynamic procedure for identifying robust 1-persistent arcs is outlined in Algorithm 1.



Algorithm 1: Dynamic version for finding robust 1-persistent arcs
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for s=1,...,k do
p'® « shortest path for scenario s;
LB + c¢*(p**);

RCmin < min{RC(p>*) : s € Si};

Q <+ {p; : s € Sy and RC(p**) = RCmin};
Xp <« {p'*:s5€ Sk}

Arc < {(i,j) € A(g) : g € Q};

Xa+0; A 0

while Arc # () do

else

return A,

1,s
Dyij

RD

Choose an arc (i,7) € Arc;

Are <+ Are — {(4,5)};

if (i,7) ¢ Xa and node n is reachable from node 1 in G}; then
Xa = XaU{(i,0)};

S(i,5) < {s € S+ (i,5) € p"°};

for s € S(i,j) do

< shortest path for scenario s in G7;;
Yy RD(0.35);

if RD$;; > RCmin then

fp

e

Ar < A U{(,5) 1
break;

L5 ¢ Xp then

Xp e XpU{pl):
RC(pi;‘;) + max {RDjij,max {RDT(pi;‘;) 'r € Sk\{s}}};
if RC’(pifi?) = RCmin then Arc+ ArcU ({A(pilj) NA@PYS): s € Sk}\Al);
if RC’(pifi?) < RCmin then
RCmin + RC(pi;?);
L Are « {A(py5) NA(pL®) s € SpP\Ass

for s € S(i,j) do

if RD$;; > RCmin then

L

Ar < A U{(,5) 1
break;




Algorithm 1 performs three additional tasks, when compared to the static version of the method
for identifying robust 1-persistent arcs presented in [6]. Namely, the calculation of the robustness
costs of the (1,n)-paths pi;j», (i,5) € Are, s € S(i,7), the updates of set Are, and the repetition of
the tests (8) consequent from the update of RC'min. For the first task, assuming the trees 7° and
the costs LB}, j €V, s € Sy, were previously computed, the robustness cost of pi;j-, (1,7) € Are,
s € S(i,j), is obtained in O(kn) time. In what concerns the second procedure, the update of Arc
by (10) is made through intersections, unions and differences of subsets in {A(p'®) : s € Si}, which
has k(n — 1) arcs at most. An efficient way to make such operations is with indexation using hash
sets [2], which is of O(N), where N is the total number of elements. Hence, an O(kn) complexity is
obtained. For the third task, when test (8) is repeated for a given arc (i,j) € Arc, O(k) operations

54 .
*1j

are required at most, one per each scenario s € S(i,7), because RD?,. was already determined. In
a worst case, the tasks above are performed k%(n — 1) times at most, one per each scenario in Sy
and each arc selected in Are, with up to k(n— 1) elements. Consequently, the number of operations
performed by the static procedure, O(k?*mn) for acyclic networks and O(k*mn + k?n?logn) for
general networks [6], increases by O(k3n?). Therefore, Algorithm 1 performs in O(k?mn + k3n?)
time for acyclic networks and in O(k*mn + k?n?logn + k3n?) time for general networks.

The number of scenarios used to test condition (6) may make the robust O-persistent nodes test
computationally demanding. In [6] this test uses k scenarios. The same holds for condition (9), so in
order to make this task lighter, in the following only a small number of scenarios to test M, M < k,
will be considered. Moreover, for each node i € Nod, when the first scenario s; € Si for which
(9) holds is known, then 7 is a robust O-persistent node and its analysis can halt. Hence, the tests
for scenarios s; + 1,..., M, if s; # M, can be skipped. Generally, if max{s; : i € Nod} # M, the
computation of the trees 7% can be skipped for s € {max{s; : i € Nod},..., M}. The pseudo-code
is given in Algorithm 2.

The static version of Algorithm 2 has time of O(kmn + kn? + k?n) for acyclic networks and
of O(kmn + kn?logn + k?n) for general networks [6]. In terms of the worst case computational
time complexity, the first phase of Algorithm 2 is similar to the first phase of the former version.
The second phase concerns the search for robust O-persistent nodes, which compared to the static
version has the additional work of calculating the robustness costs of the (1,n)-paths phs o pil;f,
i € Nod, s € Sg, updating set Nod, and repeating the tests (9) due to the updates of RC'min.
For the first task, assuming the trees 7° and 7 and the associate costs were previously computed,
the robustness cost of phs opl.l;ls, i € Nod, s € S, is obtained in O(k) time. The second task
concerns the update of Nod by (11), and involves differences and unions of sets with n nodes at
most. Hence, these operations require an O(n) complexity, when using indexation through hash
sets [2]. The third procedure, demands k operations at most, one per each scenario s € Si, since
RD; was already determined, and, therefore, it has O(k) complexity. In a worst case, the three
tasks are performed k(n — 2) times at most, one per each scenario in Sy and each selected node in
Nod, with up to n — 2 nodes. Thus, an additional work of O(kn?) is added to the second phase of
the former version. Nevertheless, this does not affect the total complexities of the static version.

Finally, it should be noted that all the robust 1-persistent arcs and the robust O-persistent nodes

identified with the static approaches are still identified with the dynamic approaches.



Algorithm 2: Dynamic version for finding robust 0-persistent nodes
for s=1,...,k do

Compute the tree 7%;

for j=1,...,ndo LB« cs(p;;f);

[

w

RCmin + RC(p"t);

4
5 Xp <« {p"1}; Xn < 0;
6 Nod < V\V(phl) ; Vo + 0;
7 while Nod # () do
8 Choose a node i € Nod,
9 Nod + Nod — {i};
10 if i ¢ Xn then
11 Xy +— Xy U {Z},
12 for s=1,...,M do
13 if tree T° was not yet determined then Compute the tree 7~'s;
14 RD} « ¢*(py}°) + LB; — LB;;
15 if RD; > RCmin then
16 Vo + Vo U {i};
17 break;
18 if p};s opg;f ¢ Xp then
19 Xp e XpU{py; op;);
20 RC’(pi;S <>p§,,’f) + max {RDZ-S, max {RDT(pff op,};f) S Sk\{s}}};
21 if RC(py;® op;;°) = RCmin then Nod + Nod\V(p}} o py®);
22 if RC(p};® op.2®) < RCmin then
23 RCmin + RC’(pi;S op;;f);
24 Nod « V\(V(pi;S <>p§,,’f) UW);
25 else
26 fors=1,...,M do
27 if RD;} > RC'min then
28 Vo« VouU{i};
29 L break;

30 return V)

4 Example

In the following, the dynamic algorithms for finding robust 1-persistent arcs and robust O-persistent
nodes introduced in Section 3 are exemplified. In order to better understand the differences intro-
duced in the previous algorithms with respect to the static preprocessing methods presented in [6],
the application of the two approaches is described.

Let G(V, A, S2) be the network depicted in Figure 1. Figure 2 shows the shortest path trees

from every node to node 7 in G, in scenario 1 — Figure 2.(a) — and in scenario 2 — Figure 2.(b).

Identifying robust 1-persistent arcs According to Figure 2, Q is set to {p!!, p!2}, with pt! =
(1,2,7), LB} =2, and p"? = (1,4,6,7), LB? = 7. Given that ¢?(p’!) = 12 and c!(p>?) = 8, one
has RC(p*') = 5 and RC(p'?) = 6. Hence, pb! is the path with the least robustness cost in
@, and, therefore, Arc and RC'min are initialized with {(1,2),(2,7)} and 5, respectively, for both
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Figure 2: Shortest path trees rooted at node 7 in G(V, A, S3)

approaches. The latter value does not change in the static method.

Static approach First, the arc (1,2) is considered and S(1,2) = {1}. Node 7 is reachable
from node 1 in G, and pi’112 = (1,3,2,7), with

p1112 =c P»1<112 - 1= 1
RDI( , ) 1( s ) LBl 1

Therefore, as RCmin = 5, condition (8) is not satisfied, and nothing can be concluded concerning
arc (1,2). Afterwards, arc (2,7) is selected and S(2,7) = {1}. Now, node 7 is reachable from node
1 in G%; and pi’217 =(1,3,5,7), with

RD(py) = c!(py;) — LB} = 5.

Once again, condition (8) is not satisfied, thus no robust 1-persistent arcs are detected, i.e. A; = 0.

Dynamic approach Like before, Algorithm 1 first scans arc (1,2), which does not satisfy (8)
for RC'min = 5. Additionally, the robustness cost of Piilg = (1,3,2,7) is determined by

RC(piy) = max{1, RD?((1,3,2,7))} = max{1, ?((1,3,2,7)) — LB} = 3.
SES2 SES?2

which improves RCmin to 3. Therefore, because A; = (), according to (10) Arc is updated to

Are = {A((1,3,2, 7)) N A(pY®) : s € So} = {(2,7)}.

10



Then, arc (2, 7) is selected and pi’;? =(1,3,5,7), with RDl(pi’217) = 5. For the updated RC'min = 3,
the condition (8) holds, which means that arc (2,7) is robust 1-persistent, i.e. A3 = {(2,7)}.

Identifying robust O-persistent nodes Figure 3 shows the shortest path trees from node 1 to
any node in G(V, A, S2), in scenario 1 — Figure 3.(a) — and in scenario 2 — Figure 3.(b).

1,1 1,2
Cl(plj ) 02(p1j )

Ok

0 0 3 0 7
O—@—E @ & @
2 6
(O——(©) (O——(©)
0 2 3 5
(a) under scenario 1 (b) under scenario 2

Figure 3: Shortest path trees rooted at node 1 in G(V, A, S3)

In what follows the number of scenarios tested in (8) is limited to M € {1,2}. As mentioned in
the previous section, this constraint was not used in [6], it will be applied to both approaches for

the sake of comparing them.

Static approach Because p''! = (1,2,7) is the shortest (1,n)-path with the least robustness
cost, 5, Nod is initialized with {3,4,5,6} and RCmin = 5.

o M =1

Starting with node 3, the inequality (9) is not satisfied in scenario 1, given that
RD} = c'(p13) + LBi — LB} =1 < RCmin.
The same thing happens for nodes 4,5 and 6, because
RD} = ¢t (p;}') + LB} — LB =5 < RCmin, i = 4,5,6.
Therefore, no robust 0-persistent nodes are detected when considering only scenario 1, Vp = ().

o M =2

For scenario 2 the nodes 3, 4 and 6 still do not satisfy (9), given that
RD? = *(p1y) + LB2 — LB? = 3 < RCmin,

and
RD? = *(p}*) + LB} — LB} = 0 < RCmin,, i = 4,6.

11



Nevertheless, (9) holds for node 5 and scenario 2,
RD? = &(pi?) + LB? — LB? = 6 > RCmin,

therefore, node 5 is the only one identified as robust O-persistent, Vy = {5}.

Dynamic approach In this case, RCmin is initialized with RC(p'!) = 5 and Nod with
VAV (p"') = {3,4,5,6}.

o M =1

Starting by scanning node 3, condition (9) is not satisfied for scenario 1. Then, the robustness
cost of the path pi’sl <>p£1,)’71 = (1,3,2,7) is determined, RC((1,3,2,7)) = 3, and this value
improves RC'min. Additionally, by (11) Nod is updated to V\V'((1,3,2,7)) = {4,5,6}, since
at this point Vj = 0.

For the updated RC'min = 3, when choosing nodes 4, 5 and 6 to scan, inequality (9) is always

satisfied for scenario 1, given that
RD}! =5> RCmin, i =4,5,6.
Consequently, all the nodes in Nod are identified as robust 0-persistent, i.e., Vj = {4,5,6}.

o M =2

Condition (9) holds for node 3 and scenarios 1 and 2, with the initial RC'min = 5. Then, the
path associated with node 3 for scenarios 1 and 2, pif opé’;, s € Sy, is given by (1,3,2,7),
which has a robustness cost of 3. The remaining steps are those presented for M = 1, thus
Vo ={4,5,6}.

Finally, Corollary 1 is applied to detect robust O-persistent nodes. The arc (2,7) was identified
above as robust 1-persistent, when associated to path ¢ = (1,3,2,7), with S(2,7) = {1}. According
to Figures 2 and 3, one has pﬁl = (1,3,4), p}l’; = (4,6,7), p%g} = (1,3,5), pé’; = (5,7), p}él =
(1,3,4,6) and pé’; = (6,7), and none of these sub-paths contains arc (2,7), i.e. (2,7) ¢ phl and
(2,7) ¢ pilT’Ll, for every i € V\V(q) = {4,5,6}. Therefore, V) = {4,5,6}.

For this example Algorithm 2 is more effective than its static version, given that it detects more
robust O-persistent nodes than the former version and the same set of nodes as Corollary 1, even
when M = 1. The applications of the previous dynamic rules and of Corollary 1 are independent.
Besides, the above results show that the dynamic rules can be a good alternative method for
preprocessing when Corollary 1 cannot be applied, that is, when no robust 1-persistent arcs have

been detected.

Computing a robust shortest path after preprocessing The reduced network obtained from
preprocessing is depicted in Figure 4. Arc (2,7) must be contained in the optimum solution since it
is robust 1-persistent. Thus, the reduced network results from removing from G all the remaining
arcs that start in node 2, (2,5), or that end in node 7, (5,7) and (6,7). At this moment nothing

can be said about the other arcs in G, represented with a dashed line in Figure 4. The robust
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Figure 4: Reduced network after preprocessing

O-persistent nodes, 4, 5 and 6, are also removed from G, as well as all the arcs that start or end in
these nodes.

There are only two (1, 7)-paths containing arc (2, 7) in the reduced network, p*! = (1,2, 7), with
RC(ph') =5, and ¢ = (1,3,2,7), with RC(q) = 3. Therefore, g is the robust shortest path in G.

5 Computational experiments

This section is dedicated to the computational comparison of the static (presented in [6]) and the
dynamic (in Algorithm 2) methods for preprocessing robust 0-persistent nodes, and to their impact
on solving the robust shortest path problem when combined with the labeling and the hybrid
algorithms introduced in [5]. The reason for not considering the empirical results for preprocessing
robust 1-persistent arcs is that the methods developed with that purpose only showed to be effective
for networks with a very small density d = m/n, d € {1,2}. In fact, in these cases the majority of
the arcs of the network belongs to the shortest (1,n)-paths p'*, s € Sy, which improves the chances
of finding robust 1-persistent arcs.

Algorithm 2 and its static version were implemented in Matlab 7.12 and ran on a computer
equipped with an Intel Pentium Dual CPU T2310 1.46GHz processor and 2GB of RAM. The codes
use Dijkstra’s algorithm [1] to solve the single destination shortest path problem for a given scenario.
As mentioned earlier, the preprocessing techniques were combined with the labeling algorithm (LA)
and the hybrid algorithm (HA) in [5]. The robust shortest path problem was solved with and
without preprocessing.

The benchmarks used in the experiments correspond to randomly generated directed graphs
with n € {500, 1000, 2000, 5000} nodes, density d € {5,10,20}, and k € {2,3} scenarios. For each
scenario, each arc cost is assigned with a random integer number in U (0, 100).

For each network dimension, 10 instances were generated. For each instance, the two preprocess-
ing algorithms were applied, and (9) was tested for the scenarios 1,..., M, with M € {1...k}. The
robust shortest path problems were solved by LA and by HA, after preprocessing. Alternatively,

LA and HA solved the same instances from scratch, with no preprocessing.

5.1 Results

In order to analyze the performance of the static and the dynamic algorithms, the average total
running times (in seconds) are calculated for each network dimension. Let Py, NP and AP, represent
the average CPU times to preprocess robust 0-persistent nodes, to solve the robust shortest path
problem with no preprocessing, and to do the same after preprocessing, respectively. Let also T Py

denote the average overall CPU time for finding a robust shortest path combined with preprocessing,
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ie., TPy = Py + APy. Additionally, let Ny represent the number of robust 0-persistent nodes.
The application of the static and the dynamic methods is distinguished by the indices s and d,
respectively.

HA, d=5, k=2 LA, d=5, k=2
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Figure 5: Average CPU times for preprocessing robust O-persistent nodes and for algorithms HA
and LA, with and without preprocessing, when k = 2

The average CPU times and the number of robust 0-persistent nodes are reported in Tables 1,
2 and 3. In Tables 1 and 2, the least total CPU time to find the robust shortest path with HA and
LA is bold typed, for each fixed n, d and k. The plots in Figures 5 and 6 show the average CPU
times for k = 2 and k = 3, respectively, depending on the density of the network.

Tables 1 and 2 and Figures 5 and 6 show that preprocessing robust O-persistent nodes can
be more effective to solve the robust shortest path problem by HA or LA rather than without
any preprocessing. Combining dynamic preprocessing with finding a robust shortest path was
the most efficient method when HA was applied for M = 1 on the biggest networks (n = 2000,
d =5and k = 3, or n = 5000, except for d = 20 and k = 3), as well as when LA was applied
on most of the networks (except for n = 500 and d = 20). For all these cases, in spite of the
preprocessing work demanded by Algorithm 2 being heavier than the required by the static version,

F < P¢, the additional effort of the dynamic version leads to the detection of more robust 0-
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Figure 6: Average CPU times for preprocessing robust O-persistent nodes and for algorithms HA
and LA, with and without preprocessing, when k = 3

persistent nodes, Nj < Nod — Table 3. This contributes for a more significant reduction of the
network and consequently of the average CPU times when finding a robust shortest path after
preprocessing, AF; > APél. In conclusion, the dynamic version outperformed the static version.
Besides, preprocessing with the dynamic search was also a better alternative than solving the
problem without any preprocessing, TPél < NP.
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91

oA LA
n d M P Pg NP | AP; | AP$ | TP} | TF{ NP | AP; | AP$| TP} | TP¢
1 [ 0713 [ 0.772 || o [ 0-042 [ 0.001 | 0.755 | 0.773 | "o 7| 0-221 | 0.005 | 0.934 | 0.777
2 | 0.948 | 0.986 0.024 | 0.000 | 0.972 | 0.986 : 0.114 | 0.003 | 1.062 | 0.989
5 1 | 1.142 | 1.083 0.089 | 0.014 | 1.231 | 1.097 0.465 | 0.040 | 1.607 | 1.123
2 | 1.384 | 1.308 || 0.857 [ 0.059 | 0.003 | 1.443 | 1.311 || 1.268 | 0.304 | 0.010 | 1.688 | 1.318
3 | 1.557 | 1.527 0.042 | 0.002 | 1.599 | 1.529 0.213 | 0.007 | 1.770 | 1.534
1 [ 0877 [ 1.060 [ o [ 0-089 ] 0.010 [ 0.966 | 1.070 [ [ 0.528 [ 0.033 [ 1.405 | 1.093
2 10199 | 1.238 0.079 | 0.003 | 1.278 | 1.241 : 0.447 | 0.009 | 1.646 | 1.247
500 | 19 T | 1.201 | 1.318 0.155 | 0.080 | 1.356 | 1.398 0.675 | 0.396 | 1.876 | 1.714
2 | 1.520 | 1.584 || 1.108 [ 0.110 | 0.032 | 1.630 | 1.616 || 1.948 [ 0.558 | 0.139 | 2.078 | 1.723
3 | 1.777 | 1.915 0.101 | 0.020 | 1.878 | 1.935 0.517 | 0.065 | 2.294 | 1.980
1 [ 0856 [ 1572 [, [ 0194 [ 0.127 [ 1.050 [ 1.699 [, o [ 0.824 [ 0.603 [ 1.680 | 2.175
2 | 1.127 | 1.630 0.183 | 0.080 | 1.310 | 1.719 : 0.789 | 0.371 | 1.916 | 2.001
20 T | 1.145 | 1.328 0.203 | 0.175 | 1.348 | 1.503 0.914 | 0.839 | 2.059 | 2.167
2 | 1.481 | 1.723 || 1.053 [ 0.198 | 0.157 | 1.679 | 1.880 || 3.910 | 0.883 | 0.761 | 2.364 | 2.4%4
3 | 1.800 | 1.939 0.215 | 0.133 | 2.015 | 2.072 0.878 | 0.629 | 2.678 | 2.568
1 [ 1869 [ 1.974 || o0 [ 0.152 [ 0.002 [ 2.021 [ 1.976 [, ,, ] 0.878 [ 0.020 [ 2.747 | 1.994
2 | 2.354 | 2.476 0.077 | 0.001 | 2.431 | 2.477 : 0.455 | 0.010 | 2.809 | 2.486
5 1 | 2.783 | 2.873 0.156 | 0.020 | 2.939 | 2.893 1.002 | 0.107 | 3.785 | 2.980
2 | 3.301 | 3.685 || 2.520 [ 0.064 | 0.005 | 3.365 | 3.690 || 3.192 [ 0.360 | 0.023 | 3.661 | 3.708
3 | 4.055 | 4.084 0.037 | 0.002 | 4.092 | 4.086 0.199 | 0.013 | 4.254 | 4.097
1 [ 1.992 [ 2291 ' o[ 0.363 [ 0.021 [ 2355 [ 2312 [ 7] 2.272 [ 0.074 | 4.264 | 2.365
2 | 2.634 | 2.753 0.325 | 0.008 | 2.959 | 2.761 2.033 | 0.023 | 4.667 | 2.776
1000 | 10 1 | 2922 | 3.074 0.377 | 0.074 | 3.299 | 3.148 2.505 | 0.480 | 5.517 | 3.554
2 | 3543 | 3.532 || 2.646 | 0.361 | 0.022 | 3.904 | 3.554 || 5.328 [ 2.279 | 0.110 | 5.822 | 3.642
3 | 4.136 | 4.274 0.307 | 0.011 | 4.443 | 4.285 2.181 | 0.050 | 6.317 | 4.324
1 [2.083 [ 2737 || o, [ 0480 [ 0.138 [ 2563 [ 2.875 || "] 2.807 [ 0.833 [ 4.980 | 3.570
2 | 2.629 | 3.140 0.428 | 0.062 | 3.057 | 3.202 : 2.738 | 0.358 | 5.367 | 3.498
20 T | 2.547 | 2.845 0.586 | 0.488 | 3.133 | 3.333 3.391 | 3.051 | 5.938 | 5.896
2 | 3.257 | 3.517 || 2.594 [ 0.586 | 0.436 | 3.843 | 3.953 || 12.061 | 3.391 | 2.746 | 6.648 | 6.263
3 | 3.787 | 4.223 0.580 | 0.411 | 4.367 | 4.634 3.358 | 2.524 | 7.145 | 6.747

Table 1: Average CPU time results for preprocessing robust 0-persistent nodes, n € {500, 1000}




L1

oA LA
n d | k| M P Pg NP AP; | AP§ TP TP NP APs APg TP TP
o L | 47ad | 4872 | oo 7| 0267 | 0.007 | 5.011 1.879 ~ 599 |_LB07 | 0.045 6.551 | 4.917
2 | 6.094 | 6.384 0.083 | 0.003 | 6.177 6.387 : 0.541 | 0.016 6.635 6.400
5 T | 5.745 | 5.977 0.748 | 0.054 | 6.493 | 6.031 5.475 | 0323 | 11.220 | 6.300
3 2 | 7150 | 7.353 6.297 [ 0.455 | 0.009 | 7.605 7362 || 10.922 | 3.206 | 0.049 | 10.356 7.402
3 | 8550 | 8.748 0.297 | 0.002 | 8.856 8.750 2.194 | 0.034 | 10.753 3.782
o L[ 4315 ] 4632 , o [ 0.763 [ 0.009 | 5.078 1.641 0164 |_5-160 | 0.102 9475 | 4.734
2 | 5637 | 5883 0.599 | 0.005 | 6.236 5.888 : 3.948 | 0.031 9.585 5.914
2000 | 10 1 | 6.313 | 6.846 1.595 | 0.330 | 7.908 7.176 11.980 | 2.196 | 18.293 9.042
3 2 | 8047 | 8431 | 6.757 [ 1.509 | 0.047 | 9.556 8.478 || 19.705 [ 10.839 | 0.234 | 18.886 | 8.665
3 | 9.474 | 10.094 1.431 | 0.015 | 10.905 | 10.109 10.032 | 0.083 | 19.506 | 10.177
o | L | 4823 5845 [ . o[ 1.950 | 0.127 | 6.773 5.972 || o4, [ 12.860 | 0.833 | 17.683 | 6.678
2 | 6.218 | 7.203 1.094 | 0.039 | 8.212 7.242 : 13.320 | 0.210 | 19.547 7413
20 T | 7.140 | 8.809 2.007 | 1.629 | 9.147 | 10.438 12.605 | 10.543 | 19.745 | 19.352
3 2 | 9802 | 9774 || 7.309 | 1.813 | 0.915 | 11.615 | 10.689 || 42.829 [ 12.132 | 6.474 | 21.934 | 16.248
3 | 11.392 | 11.421 1.767 | 0.715 | 13.159 | 12.136 11.531 | 4.808 | 22.923 | 16.229
o |1 [20.486 [ 20.905 | .| 2.250 | 0.003 | 22.745 | 20.908 | . | 13.748 | 0.160 | 34.231 | 21.065
2 | 26.391 | 26.770 : 0.845 | 0.006 | 27.236 | 26.776 : 1.952 | 0.032 | 31.343 | 26.802
5 T | 25.895 | 25.979 6.072 | 0.081 | 31.967 | 26.060 43294 | 0.615 | 69.189 | 26.594
3 2 | 31.760 | 32.382 || 32.438 | 4.414 | 0.056 | 36.174 | 32.438 || 103.437 [ 31.870 | 0.198 | 63.630 | 32.580
3 | 37.897 | 38.531 3517 | 0.016 | 41.414 | 38.547 25.157 | 0.152 | 63.054 | 38.683
o | L [21.449 [ 21797 |~ [ 9.967 | 0.014 | 31.416 | 21.811 [, [ 53.750 | 0.187 | 75.199 | 21.984
2 | 27.264 | 27.888 : 7.530 | 0.005 | 34.794 | 27.893 : 16.056 | 0.132 | 73.320 | 28.020
5000 | 19 1 | 27.601 | 26.594 10.070 | 0.843 | 37.671 | 27.437 70.250 | 6.142 | 97.851 | 32.736
3 2 [ 34233 | 33.236 || 31.671 | 8.812 | 0.077 | 43.045 | 33.313 || 149.398 | 62.080 | 0.616 | 96.313 | 33.852
3 | 40.223 | 39.827 7.930 | 0.018 | 48.153 | 39.845 55.514 | 0.224 | 95.737 | 40.051
o | L [22.396 [ 27.453 | .o [ 14.781 | 0.430 | 37.177 | 27.883 [, . [ 81121 | 2391 | 103,517 | 29.844
2 | 29.453 | 33.095 : 14.009 | 0.069 | 43.462 | 33.164 : 82.884 | 0.527 | 112.337 | 33.622
20 T | 28.653 | 42.394 12.513 | 6.661 | 41.166 | 49.055 79.006 | 46.820 | 107.650 | 89.214
3 [ 2 | 34.135 | 42.061 | 34.468 | 11.397 | 3.018 | 45.532 | 45.079 || 301.563 | 78.260 | 22.580 | 112.404 | 64.641
3 | 41.741 | 45.958 14.920 | 1.968 | 56.670 | 47.926 78.830 | 14.193 | 120.571 | 60.151

Table 2: Average CPU time results for preprocessing robust O-persistent nodes, n € {2000, 5000}




For each fixed n, d and k, the smaller the number of scenarios for testing (9), the less effort was
required for computing the shortest path trees rooted at node 1. Hence, small values of M implied
small preprocessing CPU times. This is valid for both the static and the dynamic approaches. The
latter is always better than the first in detecting robust O-persistent nodes, N§ < Ng, when M is
fixed, as Table 3 shows. In general, the best value of M to consider in order to ensure that finding
a robust shortest path with preprocessing is faster than solving the problem without preprocessing,
must assure that Py < NP and that the number of detected robust O-persistent nodes is sufficient
to reduce the CPU time which may not exceed NP — Py. Tables 1 and 2 show that Algorithm 2
was more effective than its static version on such task when M = 1, except if n = 500, d = 20,
k € {2,3}. When M = 2 or M = 3, the dynamic preprocessing combined with LA was the most
efficient method in very few cases.

LA was always more sensitive to preprocessing than HA, and showed the most drastic reductions
with respect to N P. This can be explained by the fact that removing nodes from the network allows
to discard a considerable number of labels in LA, making easier the determination of an optimal
solution. For HA, despite the fact that eliminating nodes reduces the effort on calculating reduced
costs, preprocessing does not have so much impact, given that the search for a robust shortest path
is more focused on selecting suitable deviation arcs and that can be done in few iterations without

preprocessing [5].

n = 500 n = 1000 n = 2000 n = 5000
d k| M| N T N N | NS NS | N§ NS | N§
o | L ][ 267 [ 491 ]| 535 | 991 [ 1518 | 1992 || 3247 | 4990

2 || 361 | 495 || 714 | 994 || 1788 | 1995 || 4110 | 4994

5 1 |[ 130 | 410 || 516 | 881 || 764 | 1730 || 1477 | 4646
32 | 222|479 || 748 | 972 || 1126 | 1963 || 2193 | 4966

3 || 279 [ 493 || 834 | 989 || 1336 | 1992 || 2633 | 4994

o |1 ][ 149 [ 430 ]| 221 ] 903 ]| 911 [ 1943 || 1260 | 4939

2 || 196 | 483 || 290 | 974 || 1144 | 1990 || 1788 | 4993

10 1 65 | 170 || 161 | 666 || 106 | 1250 || 353 | 3782
3 2 || 120 | 324 || 236 | 871 || 188 | 1806 || 661 | 4724

3 || 151 [ 389 || 286 | 936 || 264 | 1925 || 900 | 4915

5 |1 19 [ 103 || 113 | 607 8 [ 1662 || 119 [ 4404

2 34 | 201 || 146 | 776 14 | 1862 || 208 | 4806

20 1 2 16 0 52 57 | 266 60 | 1383
32 4| 44 0| 111 || 138| 710 || 108 | 2713

3 5| 97 1] 152 || 179 | 963 || 155 | 3248

Table 3: Average number of robust 0-persistent nodes

The number of detected robust O-persistent nodes is high for the networks with the lowest
densities (d € {5,10}), particularly for Algorithm 2 — Table 3. Moreover, when n, d and M are
fixed, less nodes tend to be detected when k increases, since IN§ and Nod also decrease. Globally,
Figures 5 and 6 show that HA or LA have similar performances for the lowest densities (d € {5,10}).
Moreover, LA is much more sensitive to the dynamic preprocessing than to the static preprocessing
for all the densities, [NP — TP§| < |[NP — TPY|.
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6 Conclusions

In this work new techniques were developed to identify robust 1-persistent, and O-persistent, arcs
and nodes of the network. These techniques are dynamic versions of the preprocessing strategies
presented in [6], because the tests they involve are updated as new paths are computed. The dynamic
techniques were exemplified and its improvement towards the former versions was empirically tested
on random instances, when combined with the labeling and hybrid algorithms introduced in [5].

The performed experiments revealed that, in general, the dynamic approach is the best choice for
preprocessing robust O-persistent nodes. Besides, LA was always more efficient after preprocessing
than with no preprocessing at all. The same only happened with HA for networks with a large
number of nodes using the dynamic preprocessing when M = 1, even for the cases for which the
static approach was not efficient.

The improvement of the dynamic method, when compared to the static version in terms of
the number of detected robust O-persistent nodes ranged between 11% and 3600%. In general this
reduction was also more demanding in terms of the CPU times. Nevertheless, for most of the cases
the results showed that the total CPU time for solving the problem was still better when using the
dynamic, rather than the static approach. The algorithms HA and LA after preprocessing with the
dynamic method also outperformed the static version for almost all the cases. The maximum CPU
time reduction was of 71%, when using LA, and of 31% when using HA. The biggest problems, in
networks with 5000 nodes, 100000 arcs and 3 scenarios, were solved in less than 10 seconds by HA

and in less than 50 seconds by LA, after preprocessing.
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