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Abstract 

The EU emissions trading system (EU ETS) is a cornerstone of the European Union's policy to 
combat climate change and its key tool for reducing industrial greenhouse gas emissions cost-
effectively. The purpose of the present work is to evaluate the influence of CO2 opportunity cost 
on the Spanish wholesale electricity price. Our sample matches Phase II of the EU ETS. A vector 
error correction model (VECM) is applied to estimate not only long-run equilibrium relations, 
but also short-run interactions between the electricity price and the fuel (natural gas and coal) 
and carbon prices. Daily spot prices serve as main inputs of the econometric approach, while the 
four commodities prices are modeled as joint endogenous variables. Likewise, we include a set 
of exogenous variables in  order  to  account  for  the  electricity  demand  conditions  and  the  
electricity generation mix. We estimated the dynamic pass-through of carbon price into 
electricity price. The results show evidence that power producers have been passed on the 
opportunity cost of freely allocated emission allowances to electricity price, enabling power 
companies to get windfall profits. The results also confirm significant differences in the pass-
through rate of CO2 emissions costs according to the electricity demand level (peakload vs. off-
peakload). Finally we conducted an impulse response analysis to account for the complex 
interactions between all endogenous variables and to estimate the response of electricity price to 
shocks in the fuel and carbon prices. 

 
JEL codes: Q58, H23, Q48, C32, L94 

 
Keywords: Environmental policy; Carbon emissions; Electricity prices; Windfall profits; 
Cointegration; Vector Error Correction Model. 
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1. Introduction 

The EU emissions trading system (EU ETS) is the first international system for trading 
greenhouse gas emission allowances. The EU ETS works on the 'cap and trade' principle: a limit 
is set on the total amount of certain greenhouse gases that can be emitted by the factories, power 
plants and other installations in the system. Transactions of such allocated allowances are then 
made possible through an EU emissions allowances (EUA) market that provides a price for the 
CO2. The cap is reduced over time so that total emissions fall. In 2020, emissions from sectors 
covered by the EU ETS are expected, by the European Commission to be 21% lower than in 
2005. Launched in 2005, the EU ETS is now in its third phase, running from 2013 to 2020. A 
major revision approved in 2009 in order to strengthen the system means the third phase is 
significantly different from phases one and two and is based on rules which are far more 
harmonized than before. This paper builds on previous work by the authors for the Portuguese 
Electricity Market (Freitas and Silva, 2013, 2012), the complementary division of Iberian 
Electricity Market (MIBEL). According to our knowledge, we believe this study is an innovative 
contribution for the state of the art (empirical research in measuring pass-through of CO2 costs 
into commodities or products prices) as regards the treatment given to the exogenous variables 
that aim to reflect the marginal power production unit present in the electricity system. This 
paper is structured as follows. Section 2 presents a brief literature review. Section 3 describes the 
functioning of the Spanish electricity market. Section 4 presents the data set. Section 5 describes 
the methodological approach. Section 6 presents the empirical findings. Section 7 concludes. 

 
2. Literature Review 

Previous authors began to assess the interaction between carbon prices and electricity prices. A 
more extensive literature review regarding the EU ETS impact in the European power sector can 
be found in Freitas and Silva (2013). Most published analyses conducted in order to estimate the 
pass-through rate (PRT) of CO2 cost into electricity prices have not considered the mutual 
interactions between electricity price, fuel prices (natural gas, coal, fuel, oil) and carbon prices. 
One of the first studies taking into account those interdependencies was provided by Fezzi and 
Bunn (2009) where the authors, using multivariate analysis, modeled the prices of all variables as 
a joint system. Developing a vector error correction model (VECM), with the electricity, gas and 
carbon prices as endogenous variables, and temperature as an exogenous regressor, the authors 
estimated the dynamic pass-through of CO2 price into electricity price for Germany and UK. 
Other studies have been following that econometric approach, where this article also belongs. 
Honkatukia et al. (2006) developed a similar model for the NordPool market considering the 
electricity, gas, coal and carbon prices as endogenous variables. Fell (2010), also for the 
NordPool and with the same prices variables, added to the VECM the temperature and the 
reservoir water level as exogenous regressor. Chemarin et al. (2008) estimated with a VECM for 
the France power market considering the electricity, gas, oil and carbon as prices as endogenous 
and two different weather variables: the temperature, affecting the demand side of electricity 
market, and rainfall influencing the electricity production of a country concerning its energy mix. 
Mohammadi (2009) analyzes the relation between the electricity prices and coal, natural gas and 
crude oil prices for the USA market. Also for the USA market, Mjelde and Bessler (2009) added 
the uranium price to the analysis and controlled the weather effects considering temperature 
variables similar to those used in our model. Thoenes (2011) analyzes the relationship between 
electricity, fuels and carbon prices for the German market. Using a different methodology, 
Ferkingstad et al. (2011) studied the Northern European electricity market case and Moutinho et 
al. (2011) focused on the same market as our study, the Spanish power market. 
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3. Spanish Electricity Market Background 

The Spanish energy sector was liberalized in the late 1990s and the Spanish electricity wholesale 
market was established in 1998. An important reform implemented in the Iberian wholesale 
electricity markets was the launch of MIBEL in July 2007.The joint Portuguese-Spanish 
electricity market allows participants to trade power on either side of these countries’ border. The 
daily spot market (the drive of the current study) is managed by OMEL (Operator responsible for 
the Electricity Spot Market). The wholesale electricity spot price formation in OMEL uses 
“market splitting” procedure to solve cross-border congestion management - one single Iberian 
price if there is no congestion in the interconnection between Spain and Portugal and with 
distinct prices if there is congestion in the interconnection between both countries (Silva and 
Soares, 2008). Table 1 shows the total installed capacity and production by technology at the end 
of 2010. Five firms have been operating in the Spanish power generation market as competitors: 
Endesa, Iberdrola, Unión Fenosa, Hidroelectrica del Cantábrico and Electra del Viesgo. 
 

Table 1. Electricity Production and Generation Capacity by Technology 

 
Installed Capacity (MW) 

 
Electricity Production (GWh) 

Thermal Fuel/gas 2.860 2,9% 
 

1.825 0,7% 
Thermal Coal 11.380 11,5% 

 
22.097 7,9% 

CCGT (Natural Gas) 25.235 25,5% 
 

64.604 23,1% 
Hydroelectric 17.561 17,7% 

 
38.653 13,8% 

Nuclear 7.777 7,9% 
 

61.990 22,1% 
Renewables 27.238 27,5% 

 
61.866 22,1% 

Others 6.992 7,1% 
 

29.036 10,4% 
Total 99.043 100,0% 

 
280.071 100,0% 

Source: REE – Red Eléctrica de España: “El Sistema Eléctrico Español”. CCGT – combined cycle gas turbine. 
 
The influence of carbon on the price of electricity may not be constant across time. Even the 
unlikely event of full pass-through of CO2 costs, the CO2 emissions associated with electricity 
generation will remain a function of the generation fuel expended. This in turn induces the 
increase in the marginal cost of electricity generation due to CO2 market dependency upon the 
technology adopted in generation. Assuming that Spanish electricity market is competitive with 
electricity pricing based on the cost of marginal generator, the changes in electricity prices due to 
carbon emission prices will depend on the generation technology of the marginal producer. If the 
electricity market in question has generation technologies at the margin that vary over time, such 
as the Spanish electricity system, then the electricity price response to carbon price changes will 
be variable across time. This presents an additional challenge to the estimation of the electricity 
responsiveness to CO2 price changes. In order to overcome this difficulty, we included a set of 
variables in the econometric model which we hope to serve as a proxy of the marginal producer - 
electricity generated by technology, bided/matched over 95% of the marginal price. Climate 
variables, such as temperature, rainfall or brightness may also influence the relationship between 
electricity and carbon prices (Engle et al., 1986).  
The basic assumption in our econometric analysis is that changes in electricity prices can be 
explained by variations in fuel and carbon costs of the price-setting technology. Hence, it is 
assumed that other costs (capital, operational or maintenance costs) are constant, and that the 
market structure did not vary over the period of the study. Therefore, changes in prices cannot be 
attributed to changes in technology, market power, generation capacity or other factors. 
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4. Data 

The present work focuses on Phase II of the EU ETS, ranging from January 01, 2008 to 
December 31, 2011. Daily data for working days are used (weekend and national holidays are 
excluded because of significant distinct demand). The electricity series from OMEL is the day-
ahead price (€/MWh) for the three load regimes: peakload, off-peakload and baseload. The peak 
price is the hourly average of spot prices quoted from 8:00h to 20:00h, while the off-peak block 
covers the remaining time. The base load price is the average of the 24 hourly prices quoted 
during a day. The natural gas price (€/MWh gas) is the spot price from the TTF (Title Transfer 
Facility) trading hub1. The coal price (€/ton.) is the spot index API#2 (CIF ARA2). The EUA 
price series (€/ton.) is the future price quoted at EEX – European Energy Exchange (Leipzig, 
Germany)3. We transformed the price variables into their natural logarithms to reduce variability, 
thus obtaining directly the elasticity values from the parameter estimates. 
 

Table 2. Summary Statistics 

  
Main Variables - Prices 

 
Control Variables 

  
Electricity 

 
Inputs 

 
Temp. 

 
Production Technologies 

  
Peak Base Off-peak 

 
Carbon Gas Coal 

 
CDD HDD 

 
Renew Hydro CCGT Coal 

units 
 
€/MWh €/MWh €/MWh 

 
€/Ton. €/MWh €/Ton. 

 
ºC ºC 

 
% % % % 

Mean 
 

52,20 48,01 43,83 
 

15,92 19,31 76,78 
 

1,41 2,28 
 

0,03 0,19 0,58 0,17 
Median 

 
50,72 46,93 42,92 

 
14,80 21,40 78,62 

 
- - 

 
0,01 0,14 0,64 0,11 

Min. 
 

3,47 4,62 5,78 
 

6,90 7,00 42,46 
 

- - 
 

0,00 0,00 0,00 0,00 
Max. 

 
93,67 82,13 72,98 

 
29,27 31,49 141,91 

 
8,64 13,43 

 
0,70 0,87 0,97 0,83 

Std. Dev. 
 

14,60 13,47 12,72 
 

4,55 5,89 22,32 
 

2,28 3,10 
 

0,11 0,16 0,27 0,18 
Var.Coef. 

 
0,28 0,28 0,29 

 
0,29 0,31 0,29 

 
1,62 1,36 

 
3,25 0,89 0,46 1,07 

Skewness 
 

0,33 0,17 -0,03 
 

0,93 -0,37 0,51 
 

1,32 1,19 
 

4,74 1,60 -0,67 1,39 
Kurtosis 

 
-0,16 -0,29 -0,29 

 
0,26 -1,01 -0,08 

 
0,31 0,38 

 
21,60 2,77 -0,61 1,44 

Source: Electricity prices - OMEL; Inputs (fuel prices and EUA price) - Thomson Reuters/DataStream; Air 
temperatures - European Climate Assessment & Dataset (ECA&D); Production technologies: OMEL. 
 
As shown by Engle et al. (1986) as well as by other studies - Fezzi and Bunn (2010), Fezzi and 
Bunn (2009) and Fell (2010), including for the Spanish case (Labandeira et al., 2012; Valor et 
al., 2001) -, the relationship between electricity demand and air temperature is non-linear (“V” 
shaped function) as it is used for both heating or cooling purposes. Therefore, in order to 
consider that non-linear relationship between electricity demand and air temperature, we 
modeled temperature as a deviation from a threshold. We defined two climate variables: HDD 
(heating degree days), which represents the deviations of mean temperature below the threshold 
of cold (increasing of electricity demand is mainly for heating purposes), and CDD (cooling 
degree days), which represents the deviations above the threshold of heat (increasing of 
electricity demand is mainly for cooling purposes).4 We used the thresholds proposed by 
Labandeira et al. (2012) for the Spanish case, considering the level of 13 ºC for HDD and 23ºC 
for CDD. 

                                                
1 TTF in Netherlands is one of the most important trading hubs in Europe; physical natural gas delivery at national 
trading point, the Dutch Title Transfer Facility. 
2 Delivered to the Amsterdam/Rotterdam/Antwerp region. 
3 We selected the future price because this is the only price series of EUA 2nd Phase that starts on January 1st, 2008. 
However, we tested prices from other markets (futures and spot), namely ECX – European Climate Exchange 
(London, UK) and BlueNext (Paris, France), and we did not find significant differences. 
4 HDD = max (T* -  Tt; 0) and CDD = max (Tt - T**; 0), with Tt representing the mean daily temperature, T* the 
cold threshold and T** heat threshold. 
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To control the model for the marginal technology in the market, we defined four variables 
according to the merit order present in the Spanish power generation mix: renewables, 
hydroelectric, thermal coal and combined cycle gas turbine (CCGT) are the usual marginal 
technologies5. Each variable “mixt

m” is defined as the ratio between the power generated by the 
technology “m” bided/matched over 95% of the marginal price and the total amount of power in 
the market bided/matched over 95% of the marginal price. For instance, the variable mixt

coal = 
0,25 means that, on day t, 25% of all electricity bided/matched over 95% of the marginal price 
was produced by coal-fired power plants. These variables, like the air temperature variables, are 
treated in the econometric model as exogenous variables. 
 
5. Model Description 

It is becoming well known that dynamic interactions may be important in the price formation 
process of electricity as shown by Knitell and Roberts (2005). In understanding the interation of 
electricity and input prices, there are many complex relationships to consider. For instance, given 
the marginal tecnologies present in the Spanish electricity system, it would appear likely that 
coal and natural gas prices influence electricity prices, and EUA prices are influenced by coal 
and natural gas prices as shown by Mansanet-Bataller et al. (2007) and Alberola et al. (2008). 
The multivariate approach of simultaneous equations is well suited to handle with the possible 
endogeneity problems which could arise from those interactions. With this econometric 
technique all price variables in the model are treated as endogenous.  
Multivariate analysis has been developed using either the vector autoregressive (VAR) models or 
cointegrated VAR models. The cointegration concept, introduced by Engle and Granger (1987), 
means that individual economic variables may be non-stationary and wander through time, but a 
linear combination of them may converge to a stationary process. Such a process, if present, may 
reflect the long-run equilibrium relationship, and it is referred to as the cointegration equation. 
As noted in Engle and Granger (1987), there are strong beliefs that economic data are non-
stationary which can lead to spurious regression results. Removing the non-stationarity by 
differencing the variables may impose the risk of losing relevant information about long-term 
relationships. Alternatively, the VAR can be improved to handle cointegrated variables in what 
is commonly referred as a VECM. This latter alternative, if it is possible, has the advantage of 
allowing the simultaneous analysis of the long-run interactions and the short-term adjustments to 
the equilibrium relationship.  
The specification in this study follows Johansen and Juselius (1990) and Johansen (1991). 
Assuming the existence of cointegration, the data generating process Pt can be appropriately 
modeled as a VECM with k -1 lags (which is derived from a levels VAR of order k). Consider a 
VAR of order k with a deterministic part given by µt. One can write the p-variate process as Pt = 
µt + A1Pt-1+ A2Pt-2 + … + AkPt-k + ɛt.  
Taking the variables in first differences, with Δ as the difference operator (ΔP = Pt - Pt-1), than 
Pt-i ≡  Pt-1 - (ΔPt-1 + ΔPt-2 + … + ΔPt-i+1) and one can re-write the process as: 
 

(1) 
  
 Where:   ;  and  

                                                
5 We excluded the thermal fuel because it has represented the marginal technology at very few situations.  Moreover 
in the econometric model it is not statistical significant. 
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In Eq. (1) Pt represents a vector of p non-stationary endogenous variables and the matrix Π 
contains information about the long-run relationship among endogenous variables and can be 
decomposed as Π = α β´, whereas β represents the cointegration vectors and α the matrix with the 
estimations on the speed of adjustment to the equilibrium. The matrix Π is called an error 
correction term, which compensates for the long-run information lost through differencing. The 
rank of matrix Π (r) determines the long-run relationship. If the rank of the matrix Π is zero (r = 
0), there is no long-run relationship and the model above is equal to a VAR in differences. If the 
matrix Π has the full rank (r = p), then it is invertible, meaning that the processes Pt is stationary 
I(0) and a normal VAR in levels can be used. The cointegration relationship occurs when the 
order of the matrix is between 0 and p (0 <r <p) and there are (pxr) matrices α and β such that 
the equation Π = α β´ holds. In this case, Pt is integrated of first order I(1) but the linear 
combination Xt = β´ Pt is I(0). If, for example, r = 1 and the first element of β was β = -1, then 
one could write the linear combination as Xt = -P1,t + β2P2,t + … + βpPp,t, which is equivalent to 
saying that long-run equilibrium relationship among variables of vector Pt is expressed as P1,t = 
β2P2,t + … +  βpPp,t - Xt. This long-run relationship may not holds all the time, however the 
deviation Xt are stationary I(0). In this case, Eq. (1) can be written as: 
 

(2) 
 
This approach was extended later by Harbo et al. (1998) and Pesaran et al. (2000) to include 
exogenous variables in the model. This in our case is particularly useful because it allows an 
adequate treatment of the marginal technology and temperature variables.  
In our case a general VECM specification can be formulated as: 
 

(3) 
 
- Where Pt is a (4x1) vector of prices (endogenous variables) measured at time t: Pt = [Pt

peak, 
Pt

carb, Pt
gas, Pt

coal] - Pt
peak is the natural logarithm of electricity price, Pt

carb is the natural logarithm 
of CO2 emission allowances price, Pt

gas is the natural logarithm of natural gas price and Pt
coal is 

the natural logarithm of coal price. α and β are (4xr)6 matrix, whereas β and  α represent, 
respectively, the cointegrating vectors and the matrix with the estimations on the speed of 
adjustments to the equilibrium. 
- Where Γi is a (4x4) matrix with the estimations of short-run parameters relating price changes 
lagged i periods. 
- Where Ф is a (4x6) matrix of coefficients associated with the (6x1) vector Zt  that represents the 
exogenous variables: Zt = [mixt

renew, mixt
hydro, mixt

ccgt, mixt
coal, CDD, HDD] - mixt

renew is the % of 
electricity bided/matched over 95% of the marginal price on day t produced by renewables, 
mixt

hydro produced by hydroelectric power plants, mixt
ccgt produced by CCGT power plants, 

mixt
coal produced by coal-fired power plants,  and the air temperature variables (HDD and CDD) 

as defined previously. 
- Where µt is a (4x1) vector of constant7 and εt is a (4x1) vector of innovations.  

                                                
6 Where r is the number of cointegrating vectors. 

7 Actually Π = α β´ may be of order (4x5) or (4x4) depending on whether the constant is inside or outside (restricted 
or unrestricted) of the cointegration space. 
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6. Empirical Results 
6.1 Unit Root and Cointegration Tests 
We started our estimation procedure by testing the non-stationarity for all price series. We tested 
the null hypotheses of a unit root (UR) trough the Augmented Dickey-Fuller Test (ADF test) and 
the null of stationarity trough Kwiatkowski, Phillips, Schmidt and Shin test (KPSS test). The 
tests were conducted using the natural logarithms of the price series (electricity, EUA, natural 
gas and coal). As shown in Table 3, all series fail to reject the null of a UR for all specifications 
tested at a 5% level except for electricity price (ADF Test with only a constant). However, the 
Unit Root Test with Breaks, which allows accounting for the possibility of level shift (Lanne et 
al., 2002), and the KPSS test confirm the non-stationarity of the electricity prices. On the 
contrary, we have evidence that the differenced series are stationary (evidence less strong in the 
case of electricity price - KPSS test). These results provide evidence for the hypotheses that all 
prices are non-stationary in levels, but have stationary first differences. 
 

Table 3. Unit Root Tests 

  
ADF Test 

 
KPSS Test 

 
UR Test With Breaks 

 Natural Logarithm of Prices – Levels 

  
Lags Constant Const.&Trend. 

 
Lags Constant 

   
Lags Constant 

   
Stat. p-value Stat. p-value 

  
Stat. 

    
Stat. 

Ppeak 
 

6 -2,925 0,04 -2,860 0,18 
 

7 2,858 *** 
 

Ppeak 6 -1,170 
Pcarb 

 
0 -0,487 0,89 -1,306 0,89 

 
7 5,330 *** 

 
Pcarb 0 0,264 

Pgas 
 

0 -1,996 0,29 -2,011 0,59 
 

7 2,361 *** 
 

Pgas 0 -1,987 
Pcoal 

 
0 -1,116 0,71 -1,119 0,92 

 
7 2,260 *** 

 
Pcoal 0 -1,044 

 Natural Logarithm of Prices - First Differences 

  
Lags Constant No Constant 

 
Lags Constant 

     
   

Stat. p-value Stat. p-value 
  

Stat. 
     Δ Ppeak 

 
5 -18,491 0,00 -18,498 0,00 

 
7 0,039 * 

    Δ Pcarb 
 

0 -29,456 0,00 -29,409 0,00 
 

7 0,149 
     Δ Pgas 

 
0 -32,672 0,00 -32,688 0,00 

 
7 0,107 

     Δ Pcoal 
 

0 -30,741 0,00 -30,756 0,00 
 

7 0,247 
     

Notes: Null hypotheses of a unit root (the series is non-stationary) for ADF test and Unit Root With Breaks 
test. Null hypotheses of stationarity for KPSS test. Critical values and p-values for ADF test are given in 
MacKinnon (1996). Critical values for the KPSS test are given in Kwiatkowski et al. (1992): 0,347; 0,463 and 
0,739 for 10%, 5% and 1% significant level respectively. Critical values for UR With Breaks test are given in 
Lanne et al. (2002): -2,58; -2,88 and -3,48 for 10%, 5% and 1% significant level respectively. Number of lags 
chosen by SIC minimization (maximum of 20 lags) for ADF and UR tests. Number of lags for the KPSS test as 
4*(T/100)1/4. *** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level. 
 
The first step in modeling procedure is to determine the lag relationship among the price series in 
the levels VAR. The AIC (Akaike Info Criterion), SIC (Schwarz Info Criterion) and HQC 
(Hannan and Quinn Criterion) loss metrics suggest the appropriate VAR lag length is two8 
(k=2), indicate that the inclusion of exogenous variables (both the generation mix variables and 
weather variables) improves the fit of the VAR to the data, and suggest not including lags in the 
exogenous variables. 
The tests of cointegration were implemented with the technique based on the reduced rank 
regression introduced in Johansen (1991). Since the VAR model contains exogenous variables, 
the Osterwald-Lenum (1992) and Johansen (1995) asymptotic critical values are no longer valid; 
                                                
8 As the VAR is specified in first differences, the number of lags lag in the VECM should be one (k-1). 
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therefore we used the asymptotic critical values provided in Mackinnon et al. (1999). The 
decision of whether the constant is within or outside of the cointegration space was based on the 
three metrics, and the results recommend restricting the intercept to lie in the cointegration space. 
 

Table 4.  Cointegration Tests 
HO: 

  
Trace Test 

 
λmax - Max Eigen Value Test 

r = p-r = 
 

Statistics Critical Values p-values 
 

Statistics Critical Values p-values 
0 4 

 
158,67 109,82 0,00 

 
113,18 47,63 0,00 

1 3 
 

45,49 78,33 0,93 
 

34,21 40,98 0,22 
2 2 

 
11,29 50,57 1,00 

 
8,18 34,00 1,00 

3 1 
 

3,11 26,14 1,00 
 

3,11 26,14 1,00 

Notes: 5% significant level for critical values. p-values calculated using the software in Mackinnon et al. (1999). 
Model with restricted constant, two lags in endogenous variables and 6 exogenous variables. 
 
The results for both Trace Test and λmax Statistics, presented in Table 4, clearly indicate the 
existence of one cointegrated vector (r = 1). So, we proceed under the result of a single long-run 
relationship among the variables. 
 
6.2 VECM Estimation 

With the cointegration rank and optimum number of lags determined, the parameters of model 
can be estimated. The results reported in Table 5 for the cointegrated vector β, which is 
normalized on Pt-1

peak, show that all estimated parameters have the correct sign and they are all 
significant (at 10% significance level) according to the Likelihood Ratio Test as showed in 
Johansen (1995). Since the coefficients can be interpreted as price elasticities, a EUA price rise 
of 1%, would, in equilibrium, be associated with an electricity price rise of 0,27% (0,25% in the 
natural gas price and 0,27% in coal price). This pass-through rate of CO2 costs into electricity 
prices of 27% compares with the estimate of 93% in Honkatukia et al. (2006) for the NordPool 
market, 32% in Fezzi and Bunn (2009) for the UK market, [11%-13%] in Fell (2010) for the 
NordPool market, 36% in Thoenes (2011) for the German market and 51% in Freitas and Silva 
(2013) for the Portuguese market. In addition, the results we found are below the simulations for 
the Spanish market of [60%-63%] in Sijm et al. (2008) and [60%-100%] in Lise et al. (2010).  
Analyzing the short-run parameters in the VAR, only the lagged electricity price is significant. In 
the case of the exogenous variables, we could confirm that the marginal technology is important 
for the short run dynamics of electricity price. There is also strong evidence that the weather 
variables are important for electricity price changes in the short-run, when the demand of 
electricity reflects either heating (HDD) or cooling (CDD) purposes. 
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Table 5. VECM Parameter Estimates 

Cointegration Relationship 
Pt

peak 
 

Pt
carb 

 
Pt

gas  Pt
coal  Const.  

1,000  -0,268 *** -0,253 ** -0,272 * -2,397 *** 

  
(0,080)  (0,107) 

 
(0,136)  (0,530)   

         
 

Short Run Dynamics 

  
ΔPt

peak  ΔPt
carb  ΔPt

gas  ΔPt
coal  

ECt-1 
 

-0,194 ***  -   -  -0,007 * 

ΔPt-1
peak 

 
-0,332 *** 0,016 **  -   -  

ΔPt-1
carb 

 
-  0,074 ** 0,110 ** 0,104 *** 

ΔPt-1
gas 

 
-  -0,031 *  -  0,030 * 

ΔPt-1
coal 

 
-  -0,113 ***  -   -  

mixt
renew 

 
-0,622 ***  -  -   -  

mixt
hydro 

 
-0,169 ***  -   -  -  

mixt
ccgt 

 
-0,237 *** -   -   -  

mixt
coal 

 
-0,229 ***  -   -   -  

CDD 
 

0,002 **  -   -   -  

HDD 
 

0,002 **  -   -   -  
 

 Table 6. Exclusion and Exogeneity Tests 

 

Exclusion 
 

Weak 
Exogeneity 

 
Stat. p-value Stat. p-value 

Ppeak 78,18 0,00 78,7 0,00 
Pcarb 10,74 0,00 1,13 0,29 
Pgas 3,58 0,06 0,97 0,32 
Pcoal 3,04 0,08 2,90 0,09 
Const. 16,69 0,00 

   
   

     

Notes: ECt-1 refers to the adjustment coefficients (α). We only present the significant coefficients. Standard 
errors in parentheses. *** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level. 

 

 
A weak exogeneity test is performed (Juselius, 2006), which tests the null hypothesis that each of 
the series does not respond to the innovations or shocks in the cointegration space, i. e. that the 
series is unresponsive to the deviations from the long-run relationships. This test is performed on 
α, more specifically, for one particular series we test whether the corresponding row in matrix α 
is zero. According to the results reported in Table 6, for 5% significance, only the electricity 
price series rejects the null, meaning that the long-run relationships in the data are important only 
for the electricity price. These results are expected since EUA, natural gas and coal are 
commodities traded global and thus may be driven more by forces outsider the Spanish energy 
market. As one can see, the evidence of weak exogeneity is not so strong in the case of coal 
prices. Further, an exclusion test is performed (Juselius, 2006), which tests the null hypothesis 
that a particular series is not in the cointegration space. This test is performed on β, also here test 
for a zero row. As we can see (Table 6), at 5% significance level, all series reject the null, 
meaning that all the coefficients are strongly significant. Hence, there is strong evidence that all 
the price series are important to define the equilibrium vector, i.e. EUA, gas and coal prices are 
essential to define the level to which electricity price is attracted over time9. 
 

Table 7. Diagnostic Tests on Residuals 

Diagnostic Tests on Residuals 
   Serial Correlation [H0: uncorrelated] 

     Ljung-Box Q' (5) = 6,81 [0,235] 
   Heterocedasticity [H0: homokedastic] 

     ARCH (5) = 91,4 [0,000] 
   Normality (H0: normal distributed) 

     Doornik-Hansen (8) = 5.340 [0,000] 

Notes: p-values in parentheses. 
 

 Table 8. Residuals Correlation Matrix 
 

 

ΔPpeak 1 0,026 0,005 -0,038 
ΔPcarb - 1 0,108 -0,039 
ΔPgas -  - 1 0,065 
ΔPcoal  -  -  - 1 
 

     

 

                                                
9 An exclusion test is also performed on the constant term, which results in a rejection of the null hypothesis. This 
agrees with the inclusion of the constant parameter in the cointegration space. 
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Although residual analysis (Table 7) shows evidence of autoregressive conditional 
heterocedasticity (ARCH) and non-normality this is not likely to be a major problem in our 
cointegration analysis since Gonzalo (1994) showed that the properties of asymptotically optimal 
inferences present on maximum likelihood estimators hold in finite samples even without the 
normality assumption. Observing the residuals correlation matrix (Table 8) we can see that the 
correlations among all equations are very low. 
 
                             Table 9.  Results for Different Regimes Load 

Price of Electricity: peakload 
Pt

peak 
 

Pt
carb 

 
Pt

gas  Pt
coal  Const. 

 1,000 
 

-0,268 *** -0,253 ** -0,272 * -2,397 *** 

  
(0,080) 

 
(0,107) 

 
(0,136) 

 
(0,530)  

  ECt-1 = -0,194 *** 
      

          Price of Electricity: baseload 

Pt
base 

 
Pt

carb 
 

Pt
gas  Pt

coal  Const. 
 1,000 

 
-0,207 *** -0,303 *** -0,253 ** -2,051 *** 

  
 (0,062)  

 
  (0,083) 

 
   (0,106)  

 
(0,412)  

  ECt-1 = -0232 *** 
                Price of Electricity: off-peakload 

Pt
off-peak 

 
Pt

carb 
 

Pt
gas  Pt

coal  Const. 
 1,000 

 
-0,167 *** -0,362 *** -0,205  ** -1,897 *** 

  
(0,056)  

 
 (0,076)  

 
 (0,100) 

 
(0,373) 

  ECt-1 = -0,323 *** 
      

Notes: ECt-1 refers to the adjustment coefficients (α). *** Significant at 1% level; ** 
Significant at 5% level; * Significant at 10% level. 
 
In Table 9 we report the results for the strategy implemented to conclude for significant 
differences in the pass-through rate of CO2 cost into the electricity price due to differences in the 
marginal generation technology. Therefore, we estimated three alternative models defined 
according to electricity load regimes (peakload, baseload and off-peakload), assuming that in 
each regime prevails a distinct marginal generation technology. An interesting, and maybe an 
expected result, is that the PTR of CO2 is higher (lower) when the PTR of coal is higher (lower), 
meaning that the coal thermal probably is the prevailing technology at the high load periods and 
is accountable for the higher sensibility of electricity price to the carbon costs at those periods of 
day. Finally the CCGT tends to be the marginal technology for low-load periods, associated with 
a lower sensitivity of electricity price to the CO2 costs. 
 
6.3 Impulse Response Analysis 
The relationship between the variables can be illustrated graphically with an impulse response 
analysis. The functions in Fig. 1 measure the impact of an exogenous price shock of one variable 
for a period of one month (22 working days). The responses are normalized, meaning that each 
response is divided by the standard error of the innovations of that series, which allows the 
comparison of the series. Therefore, each shock has the magnitude of one standard error10. 
Impulse response functions (IRF) of electricity prices to one-time shocks in the input prices 

                                                
10 To account for contemporaneous correlation in the error terms, the innovations are orthogonalized according to the 
Cholesky standard decomposition approach. 
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(carbon, gas and coal) with bootstrapped confidence intervals (2,5% and 97,5% quintiles) are 
showed in Fig. 1.  The IRF show that the input prices have a strong, positive and persistent effect 
on the electricity price. Once the shocks have settled (about ten/fifteen working days), the effects 
are consistent with the cointegration relationship, meaning that the long-run equilibrium is 
reached roughly two/three weeks after the shock or innovation. The response to a shock in the 
carbon price starts to be opposite to the long-run relationship, but only for a short period of time. 
A similar effect was reported in Thoenes (2011). The IRF also show that the impact of an 
electricity price shock on the electricity price itself decays quickly and it isn`t persistent, meaning 
that electricity price shocks are probably driven by capacity effects. 
 

Fig. 1 - VECM Orthogonal Impulse Responses with Bootsptrapped Confidence Intervals  

Ppeak (impulse) → Ppeak (response) Pcarb (impulse) → Ppeak (response) 

  
Pgas (impulse) → Ppeak (response) Pcoal (impulse) → Ppeak (response) 

  
Notes: Impulse Response for one standard deviation innovation (shock). Days on x-axis and responses on y-axis. 
 

7. Conclusion 
We analyzed the impact of CO2 emission allowances price on the Spanish electricity market 
using a co-integrated vector error correction model. This econometric approach encompasses 
long-run equilibrium relations and short-run effects in the dynamic interactions between 
electricity price and input prices (carbon, natural gas and coal). The effect of the input prices in 
electricity price was controlled through a set of exogenous variables reflecting the demand for 
electricity conditions and the marginal technology present in the electricity system. The model 
was estimated using daily data from Phase II of the EU ETS. We estimated a dynamic pass-
through rate of carbon price into electricity price of 27%, meaning that a 1% shock in carbon 
price impact into a 0,27% shock in electricity price in the long-run. By testing different models 
for the three load regimes (peakload, off-peakload and baseload), this study found strong 
evidence of time-varying electricity price responsiveness to carbon price shocks. The marginal 
pass-through rate is higher in peak than in off-peak hours, βcarb = 27% and βcarb = 17% 
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respectively. We also showed that carbon price plays an important role in formulating the 
equilibrium price of electricity and, as the other fuels, is essential exogenous in the long run. 
The empirical results found in this study support the hypothesis that power producers have been 
passed on the opportunity cost of freely allocated emission allowances to electricity price, 
enabling power companies to get windfall profits. So, we may conclude that power producers 
competitiveness would not be affected if they had paid for the emissions allowances. 
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